

S. C. Big Data Health Sciences Conference

Object Oriented Data Analysis

J. S. Marron

Dept. of Statistics and Operations Research, University of North Carolina

February 26, 2020

From My Elementary Courses:

- Gaining Insight from Numbers Similar to "Data Science" Definitions
- The Science of Managing Uncertainty Where Probability Modeling Is Vital
- This is Why Statistics is Fundamental

More Currently Popular Terminology

Big Data

- Isn't It Just Statistics?
- Yes, But More Needed Too
- Optimization: Machine Learning
- Maybe <u>Bigger</u> Challenge:

Complex Data

UNC, Stat & OR

Well Understood Concept:

Great science now done by <u>teams</u> with complementary skill sets

- Biology
- Chemistry
- Engineering
- Quantitative Work

Common Current Idea: 1 Team member

· .

Extension of this:

- Great *Quantitative Work* needs teams with complementary skill sets
- Statistics
- Imaging
- Optimization
- Data Base

Proposed New Approach:

Team Data Science

- Education of Team Members:
 - Bring Valued (Deep) Skill
 - Know Enough to Communicate
 - Give Opportunities to Practice

What is the "atom" of a statistical analysis?

- 1st Course: Numbers
- Multivariate Analysis Course : Vectors
- Functional Data Analysis: Curves
- More generally: Data Objects

Object Oriented Data Analysis

UNC, Stat & OR

Original Thought: OODA = Mathematical Framework

(containing wide variety of interesting cases)

Object Oriented Data Analysis

Original Thought: OODA = Mathematical Framework

Current View: OODA = Focal Point

{For discussions (interdisciplinary)
about tackling serious analyses}

Object Oriented Data Analysis

Original Thought: OODA = Mathematical Framework

Current View: OODA = Focal Point

What should be the Data Objects?

Principal Component Analysis

More Than *Dimensionality Reduction*:

- <u>Visualization</u>
 - Relationships Between Objects (Scores)

UNC, Stat & OR

Interesting Real Data Example

- Genetics (Cancer Research)
- RNAseq (Next Gener'n Sequen'g)
- Deep look at "gene components"

Microarrays:Single number (per gene)RNAseq:Thousands of measurements

Interesting Real Data Example

- Genetics (Cancer Research)
- RNAseq (Next Gener'n Sequen'g)
- Deep look at "gene components"

Interesting Real Data Example

- Genetics (Cancer Research)
- RNAseq (Next Gener'n Sequen'g)
- Deep look at "gene components"
- Gene studied here: CDKN2A
- Goal: Study Alternate Splicing
- Sample Size, n = 180
- Dimension, $d = \sim 1700$

UNC, Stat & OR

Chromosome 9 Gene = CDK2A, log_{1n} Transformed, Brushed by PCA

Consequences of this Visualization:

- Lead to Full Genome Screening Method
 SigFuge
- Important Component: <u>SigClust</u> (Which Clusters are *Really There*?)
- Found New Splices
 (Now Been Biologically Verified)

What is the "atom" of a statistical analysis?

- 1st Course: Numbers
- Multivariate Analysis Course : Vectors
- Functional Data Analysis: Curves
- More generally: Data Objects

Personal Motivating Contexts

Interdisciplinary Areas:

- Cancer Genetics
- Medical Image Analysis
- Evolutionary Biology
- Drug Discovery

Data Object Types:

- Curves (Functional Data Analysis)
- Spectra (Non-Negative!)
- Images
- Shapes
- Trees
- Movies (Functional MRI)

Curves as Data Objects (FDA)

UNC, Stat & OR

Generally Euclidean: Use standard methods

Images as Data Objects

Challenge: High Dimension, Low Sample Size

Shapes as Data Objects

Challenge: Data Lie in (Curved) Manifold

Figure 2.2: The Riemannian exponential map.

Challenge: Data Lie in (Curved) Manifold {Tackle With Differential Geometry}

Important General Development: Backwards PCA

Challenge: More Complicated Data Space Manifold Stratified Space

Challenge: More Complicated Data Space Manifold Stratified Space

Surprisingly (?!?) Useful Approach:

Topological Data Analysis Persistent Homology

Advertisement

Short Course on OODA & TDA

International Biometrics Conference Seoul July 2020

Moo K. Chung, U. Wisc.

Yuan Wang, U. S. C.

Carolina Breast Cancer Study

UNC, Stat & OR

The Carolina Breast Cancer Study

Phase III: The Jeanne Hopkins Lucas Study

Thanks to: **Lain Carmichael** (Deep Learning, AJIVE) Melissa Troester (Head, CBCS) Joseph Geradts, Benjamin Calhoun (Pathology) Katie Hoadley, Chuck Perou (Genomics)

Clinical Diagnosis of Cancer:

Pathologist Views Tissue Under Microscope,

Tissue Stained with Hematoxylin & Eosin (H&E)

Thanks to BBC.CO.UK

and Reseachgate.net

Joint & Individual Variation Explained

(Angle Based)

JIVE Collaborators

UNC, Stat & OR

Eric Lock

Qing Feng

Andrew Nobel

Jan Hannig

JIVE Data Structure

JIVE Organizational Model: Multiple Matrices

(Data Types, i.e. "Blocks")

With <u>common</u> Columns as Data Objects

JIVE Analytic Goals

Explore & Quantify Variation

In spirit of PCA (Principal Component Analysis)

Tissue Micro Array Data:

Extract Small

(1mm diam.)

"Cores"

UNC, Stat & OR

Carolina Breast Cancer Study

UNC, Stat & OR

Experimental Design: n = 1191 people

For Each: 1 - 4 TMA Cores

PAM 50 Gene Expression:

Carolina Breast Cancer Study

UNC, Stat & OR

PAM 50 Gene Expression:

Set of 50 Genes

Early Technology, More Recent RNAseq → 10,000s Genes

- Measured mRNA Expression Level
- Good at Separating SubTypes
 - Basal
 - Her2
 - Luminal A
 - Luminal B

Perou Discovery: No Benefit From Chemo-Therapy

500

1000

1500

2000 2500

500

1000

2000

2000

UNC, Stat & OR

Deep Learning Image Representation

Each Core:

Randomly

Select 100

 224×224

Patches

Deep Learning Image Representation

Reduce Each Patch to 512 Features

Using Transfer Learning From VGG16:

(Trained on Many

Natural Images)

Thanks to pyimagesearch.com

Deep Learning Image Representation

For Each Core:

UNC, Stat & OR

Aggregate Patches by Averaging (Damps Out "Location" Information)

Then Average Cores For Each Person

UNC, Stat & OR JIVE: Common Nor

Look at Extremes

Negative End

Top Person

Top 16 Patches

Fat Cells & Stroma

1500

33363, group

JIVE: Common Nor

Look at Extremes

Positive End

Top Person

Top 16 Patches Highly "Cellular" Markedly Atypical Cell

UNC, Stat & OR

JIVE: Common Nor

Look at Extremes

Negative, Top

Top 16 Patches

High Nuclear Grade

Atypical Cells

Positive, Top

Top 16 Patches

Lower Nuclear Grade

Stroma, Sclerosis

UNC, Stat & OR

JIVE, Genes, Individua

Overall Up & Down

Together

Not Subtype Related!

UNC, Stat & OR

JIVE, Images, Indiv

Negative

Mostly Fat Cells

Few Nuclei

UNC, Stat & OR

JIVE, Images, Indiv

Positive

Reactive Stroma,

Few Nuclei

Little Gene Connected

UNC, Stat & OR

JIVE, Images, Indiv

Negative

Mucinous & Micro-

Papillary Carcinoma

Not PAM50 Related

1816 -

1922

1345

UNC, Stat & OR

JIVE, Images, Indiv

Positive

Fat Cells

Common Endpoint?

"Center"?

Data Integration Via Subspace Analysis (DIVAS)

DIVAS / JIVE Collaborators

Jan Hannig

Meilei Jiang

Xi Yang

Iain Carmichael

Jack Prothero

DIVAS Improves JIVE

UNC, Stat & OR

1. Partially Shared Blocks

DIVAS Improves JIVE

UNC, Stat & OR

1. Partially Shared Blocks JIVE

DIVAS Improves JIVE

UNC, Stat & OR

1. Partially Shared Blocks DIVAS

DIVAS Motivation

The Cancer Genome Atlas

Multiple Blocks

People <u>Common</u> Across Blocks

Figure : The Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013)

DIVAS on TCGA Data

Breast Cancer

- Gene Expression (GE) [16615 x 616]
- Copy Number (CN) [24174 x 616]
- Protein Exp. (RPPA) [187 x 616]
- Mutation Status (MU) [18256 x 616]

OODA is more than a "framework"

It Provides a Focal Point

Highlights Pivotal Choices:

What should be the Data Objects?

How should they be Represented?