

### On the Use of an Automated, Reproducible Binning Approach to Bring Consistency in Calibration of Predictive Models built on Electronic Health Records

Madhusree Chowdhury and Richard Jordan, Health Data Analytics Institute



### Model A: 80% accurate with 0.81 confident on the prediction it makes

#### Model B: 80% accurate with 0.98 confident on the prediction it makes



In risk prediction models, calibration is important:

- It eliminates risk of misleading clinical decisions
- It improves our models by reducing mistakes with high probabilities

A model is perfectly calibrated when p \* 100% of patients with predicted probability p of experiencing the adverse event in question actually do experience the event.



### Can we use an automated, reproducible binning approach to bring statistical consistency in calibration and the assessment of risk prediction models in a clinical setting?



- Brier Score Definition
- > Pain points in the historical method of assessing calibration
- Solution to the pain points
- Assess the effectiveness of CORP and compare the calibration and discrimination of several machine learning methods for predicting three health outcomes of interest: sepsis, mortality and respiratory failure



$$B = \frac{1}{N} \sum_{i=1}^{N} (p_i - o_i)^2$$

*N* is the sample size,  $o_i$  is the binary outcome and  $p_i = Prob(o_i = 1)$  is the predicted probability.

### **Brier Score Decomposition**

$$B = \frac{1}{N} \sum_{k=1}^{K} n_k (p_k - o_k)^2 - \frac{1}{N} \sum_{k=1}^{K} n_k (o_k - \bar{o})^2 + \bar{o}(1 - \bar{o})$$

Resolution

Uncertainty

Reliability The predicted probabilities have been discretized into a number K of bins

- $n_k$  is the number of data points in bin k
- $p_k$  is the average predicted probability in the bin
- $o_k$  the average outcome in the bin
- $\bar{o}$  is the average outcome over the entire population (incidence) ٠

Another useful metric is the Skill Score

 $Skill = 1 - \frac{B_{model}}{a} = \frac{Resolution - Reliability}{a}$ Brandom **Uncertainty** 

### **Description of the Components**

- **Reliability** (measure of **Miscalibration**) : For a perfectly reliable model  $(p_k = o_k \text{ for all } k)$  it is 0. The smaller the Reliability, the better
- **Resolution** (measure of **Discrimination**) : Measures the distance between incidence and model predictions. It tells how well a model can separate classes, so the larger it is, the better
- Uncertainty: The variance in the observations/outcomes. It is a characteristic of the data and is independent of the model being used to predict outcomes

## Pain Points in Existing Method:

- How many bins to choose for plotting the reliability diagrams?
- Upon changing the width and the population of bins, the appearance of the calibration plots change along with the metrics of miscalibration and discrimination
- The classical counting and binning approach relies on a manual, ad-hoc way of choosing the bin size/number of bins. This leads to lack of stability in the Brier Score decomposition metrics, particularly in the miscalibration/reliability and reproducibility of the reliability diagrams
- This instability can reduce a clinician's confidence in a model and impede the adoption of the model in a clinical setting

### **CORP Approach – Way To Address the Pain Points**



- This approach provides an automatic way of selecting the optimal bins which is reproducible and produces statistically consistent reliability diagrams -- without the requirement of implementation of decisions or parameter tuning
- It is constructed via nonparametric isotonic regression and implemented using pool-adjacent-violators algorithm, which assigns a (re)calibrated probability under the regularizing constraint of isotonicity
  - C Consistency
  - O Optimality
  - R Reproducibility
  - P PAV Algorithm Based

### Graphical Illustration of PAV Algorithm



Binning and Counting Approach with 10 equally spaced bins

CORP with uncertainty quantification through 90% consistency bands

### Se Comparison between Classical Approach and CORP Approach

We compare the Reliability Diagrams under the binning and counting approach with various choices of bin width and CORP approach for LightBGM Model for Mortality:



### Somparison between Classical Approach and CORP Approach

We compare the scores under the binning and counting approach with various choices of bin width and CORP approach for LightBGM Model for Mortality:

#### Bin size = 0.1, No. of bins: 10

| Brier Score    | 0.09620379 |
|----------------|------------|
| Miscalibration | 1.39E-04   |
| Discrimination | 2.27E-02   |
| Skill          | 0.18991    |
| Uncertainty    | 0.1187569  |
| AUC            | 82.5%      |

#### Bin size = 0.01, No. of bins: 100

| Brier Score    | 0.09528684 |
|----------------|------------|
| Miscalibration | 8.93E-05   |
| Discrimination | 2.36E-02   |
| Skill          | 0.1976312  |
| Uncertainty    | 0.1187569  |
| AUC            | 82.5%      |

#### Bin size = 0.04, No. of bins: 25

| Brier Score    | 0.09541323 |
|----------------|------------|
| Miscalibration | 6.64E-05   |
| Discrimination | 2.34E-02   |
| Skill          | 0.196567   |
| Uncertainty    | 0.1187569  |
| AUC            | 82.5%      |
|                |            |

#### Bin size = 0.001, No. of bins: 1000

| Brier Score    | 0.09528246 |
|----------------|------------|
| Miscalibration | 3.82E-04   |
| Discrimination | 2.39E-02   |
| Skill          | 0.1976681  |
| Uncertainty    | 0.1187569  |
| AUC            | 82.5%      |

#### Optimally binned by CORP approach

| Brier Score    | 0.09528252            |
|----------------|-----------------------|
| Miscalibration | 0.0001289288          |
| Discrimination | 0.02360333            |
| Skill          | 0.1976677             |
| Uncertainty    | 0.1187569             |
| AUC            | 82.5% (82.3% - 82.6%) |

Classical Binning and Counting Approach

CORP Approach



- The dataset is a 5% nation-wide sample of the Medicare patients while admitted into hospitals
- The train dataset has information of the year 2018 and patients with 12 months of part A and part B coverage, without any part C and age >= 18 are considered
- The test dataset has information of the year 2019

|                       | No. of Patients | No. of Features |
|-----------------------|-----------------|-----------------|
| Train Set             | 476593          | 15341           |
| Test Set 465064 15341 |                 | 15341           |



The features consisted of :

- ICD-10 codes of the diseases the patients are affected within 90 and 365 days prior to the admission date in the hospital
- CCSR codes the patient had within 90 days and 365 days before his admission
- CPT codes which are the codes telling us whether the patient had a surgery within 90 days and 365 days prior to admission
- ICD-10 and CCSR codes of the diseases the patient had at the time of admission
- Age and Sex of the patient

### **Reliability Diagrams for Sepsis**



| Brier Score    | 0.05097948            |
|----------------|-----------------------|
| Miscalibration | 4.765206e-05          |
| Discrimination | 0.002492027           |
| Skill          | 0.04575438            |
| Uncertainty    | 0.05342385            |
| AUC            | 72.8% (72.5% - 73.1%) |

LightGBM gives the best AUC, least Brier Score, maximum skill.



| Brier Score    | 0.05106985          |
|----------------|---------------------|
| Miscalibration | 6.373789e-05        |
| Discrimination | 0.00241774          |
| Skill          | 0.04406276          |
| Uncertainty    | 0.05342385          |
| AUC            | 72.6% (72.3%-72.9%) |

#### Regularized-logistic-regression



| 0.05142141            |  |
|-----------------------|--|
| 0.0002054804          |  |
| 0.002207926           |  |
| 0.03748224            |  |
| 0.05342385            |  |
| 71.9% (71.6% - 72.2%) |  |
|                       |  |

### **Reliability Diagrams for Mortality**

LightGBM gives the best AUC, least Brier Score, maximum skill.





| Brier Score    | 0.09528252            |
|----------------|-----------------------|
| Miscalibration | 0.0001289288          |
| Discrimination | 0.02360333            |
| Skill          | 0.1976677             |
| Uncertainty    | 0.1187569             |
| AUC            | 82.5% (82.3% - 82.6%) |

| Brier Score    | 0.0957091             |
|----------------|-----------------------|
| Miscalibration | 0.0001970022          |
| Discrimination | 0.02324482            |
| Skill          | 0.1940756             |
| Uncertainty    | 0.1187569             |
| AUC            | 82.2% (82.1% - 82.4%) |

#### Regularized-logistic-regression



| Brier Score    | 0.09635019                |
|----------------|---------------------------|
| Miscalibration | 0.0004582208              |
| Discrimination | 0.02286495                |
| Skill          | 0.1886772                 |
| Uncertainty    | 0.1187569                 |
| AUC            | 82.0% (81.9% to<br>82.2%) |

### **Reliability Diagrams for Respiratory Failure**



| 1.00 -                |      |            |      |      |
|-----------------------|------|------------|------|------|
| 0.75 -                |      |            |      |      |
| <mark>Н</mark> 0.50 - |      | A CONTRACT |      |      |
| 0.25 -                |      |            |      |      |
| 0.00 - 0.00           | 0.25 | 0.50       | 0.75 | 1.00 |

 Brier Score
 0.05559781

 Miscalibration
 8.451616e-05

 Discrimination
 0.004112924

 Skill
 0.06756102

 Uncertainty
 0.05962622

 AUC
 74.30% (74.1% - 74.6%)

| Brier Score    | 0.05547933            |  |
|----------------|-----------------------|--|
| Miscalibration | 5.834745e-05          |  |
| Discrimination | 0.004205233           |  |
| Skill          | 0.06954802            |  |
| Uncertainty    | 0.05962622            |  |
| AUC            | 74.6% (74.3% - 74.9%) |  |



| Brier Score    | 0.05575578            |  |
|----------------|-----------------------|--|
| Miscalibration | 0.0001112746          |  |
| Discrimination | 0.003981713           |  |
| Skill          | 0.06491168            |  |
| Uncertainty    | 0.05962622            |  |
| AUC            | 74.1% (73.8% - 74.4%) |  |
|                |                       |  |

LightGBM gives the best AUC, least Brier Score, maximum skill.

XGBoost



- The CORP approach allows us to compare both calibration and discrimination across different models
- It is a mathematically rigorous and justifiable method for automatically choosing bin sizes/number of bins in calibration analyses
- Eliminates instabilities associated with ad hoc choices of bin widths/bin counts
- At least for our 5% sample LDS data, boosting models generally outperform logistic models on both calibration and discrimination
- LightGBM appears to provide better calibration and discrimination than XGBoost
- Logistic models, however, are much more interpretable, and with the 100% VRDC data, differences between boosting and logistic may disappear
- From a business point of view and a clinical point of view, is the extra performance of boosting or other fancy ML models worth the loss of interpretability?
- There are, of course, methods (RuleFit, for example), that allow us to incorporate simple rules from boosted tree models



# **Thank You**



madhusree.chowdhury@hda-institute.com

### Appendix : Differences Between XGBoost and LightGBM



XGBoost



LightGBM

### **Appendix : Differences Between XGBoost and LightGBM**

| XGBoost                                                                       | LightGBM                                                                                                                     |  |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| Uses a pre-sorted and histogram-based algorithm for computing the best split. | Faster due to utilization of Gradient-Based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB).                   |  |
| Treats categorical variables as numerical variables with order.               | Accepts a parameter to check which column is a categorical column and handles this issue with ease by splitting on equality. |  |
| Gain is available in feature importance methods.                              | Gain is available in feature importance methods.                                                                             |  |
| Split/ Frequency/ Weight is available in feature importance methods.          | Split/ Frequency/ Weight is available in feature importance methods.                                                         |  |
| Coverage is available.                                                        | Coverage is not available.                                                                                                   |  |