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Data privacy

® Data privacy has become important, especially in health care.

Benefits of privacy protection:

® Promoting data sharing;
® Addressing legal, ethical, and fairness-related concerns;
® Configuring data-security policies.

® Some popular methods:

(1) Differential privacy;
(2) Secure multi-party computation—Federated learning;
(3) Homomorphic encryption;

Benefits of Differential privacy:

® Executable without the involvement of other parties;
® Effective for broad applications;
® One technical solution to data privacy at Low cost.
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Differential privacy
Differential privacy [Dwork, 2008] quantifies amount of privacy
protection for downstream data analysis:

® Recognizes that privacy can be undermined even after data
de-identification; e.g., “tallest person in room” is an identifier)

® Privatization mechanism m satisfies e-differential privacy:

I

P(m(Z) € B|Z = z) o
P(m(Z)eB|Z=2') =

for event B & adjacent z, z’ (substitute a single observation)

® :c: budget of protection. Small ¢ — strict privacy protection but
may reduce statistical accuracy of downstream analysis.

® Lemma (Privacy leakage): Any hypothesis test to identify Zjy's
value by testing Ho : Zjy = po vs Ha : Zi; = p1 # o, based on iid
copy of Z ZM ... ZM has power < ae™® for significance level
a > 0.
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Trade-off between protection and accuracy

e Consensus view

® Trade-off: Large noise (small budget £) — better privacy protection
but less accuracy (less usefulness) for data sharing.

e Differentially private mechanisms:
® Laplace mechanism: M(Z) = f(Z) + (e, -+ , ), € iid
~ Laplace(1/e) [Dwork et al., 2006, Dwork and Roth, 2014]
® Exponential mechanism: Sampling from a certain exponential
distribution. [McSherry and Talwar, 2007]
® Minimax optimal procedure: through conditional independence
construction [Duchi et al., 2018]
® Synthetic (imputation) data methods [Wasserman and Zhou,
2010, Snoke and Slavkovi¢, 2018, Gong and Meng, 2020, Liu et al.,
2021]
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Distribution invariant privatization (DIP)

® Question: Can we design a differentially private mechanism
preserving Z's distribution?

® DIP : Univariate Z; ~ unknown cont CDF F.

Base distr : U; ~ U(0,1)
Fv :CDF of V = (V))_,(Vi = U + ¢)

Zi=F;lo Fv(U,) + &) ~ Fz, e ~ Laplace(0,1/e).
G

® Generalization

® Discrete: continualization; Multivariate: normalizing flows, chain
rule.

® Holdout sample: constructing Fz or estimating G via NF.
@ public data ~ same distribution: e.g., American Community
Survey (public) & Census (private) are from same population.
@ subset of raw sample: never allowed to be altered, queried, or
released; rest sample is privatized & released.
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DIP

Laplace noise e ~ Laplace(0, 1/¢) for e-differentially private:
Theorem 1 (DIP, [Bi and Shen, 2022])

@ DIP is =-differentially private; privatized sample follows F’z ~ F.

@® Computational complexity of DIP is O(dnlog n).

® No trade-off: privacy protection & statistical accuracy.

® Trade-off: released size & approx accuracy of F if sample splitting.

UNIVERSITY OF MINNESOTA 6/13



Numerical examples

® Laplace mechanism (LPM) [Dwork et al., 2006, Dwork and Roth,
2014]:
Good for many types of bounded data & easy to implement;

® Exponential mechanism (EXM) [McSherry and Talwar, 2007]:
Accommodates high sensitivity & works well for discrete/categorical
data;

® Minimax optimal procedure mechanism (OPM) [Duchi et al.,
2018]:
Work for many canonical families & with exhibit lower and upper
bounds on minimax risk;

® Oracle: non-private (NP) < based on raw sample.

e Note: DIP uses 25% and 75% for training and holdout samples,
while other methods use 100% for training.
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Benchmark: UC salary data

® University of California system salary data
® collected in 2010
® Annual salaries of n = 252, 540 employees

® The average salary is $39,531.49 with a standard deviation of
$53,253.93

® Goal: mean estimation

® Compare non-private & differentially private mean salaries

® Evaluation metric: Difference between private mean & non-private
mean (baseline)
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UC salary data

® Histograms of UC salary data before and after DIP.

® Empirical distribution has almost no change while individual data
are privatized.
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Benchmark: Bank data

® Portuguese bank marketing campaign data

® Marketing campaign data collected from a Portuguese retail bank
from 2008 to 2013 [Moro et al., 2014]

N = 30, 488 respondents

® The response variable (binary):

® interest in a term deposit

Covariates (continuous, binary, and categorical):

® Age, employment status, marital status, education, loan status,
default status, device type, and past contact histories

Goal: Compare accuracy between private & non-private logistic
regression

Evaluation metric: Kullback-Leibler divergence
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Benchmark: Recommender systems

® MovielLens data

® 25,000,095 movie ratings, collected from 162,541 users over 59,047
movies [Harper and Konstan, 2015]

® Movie ratings with values in {0.5,1,1.5,...,5}
® No covariates

® Goal: movie recommendation

® Split the data randomly into a 75% training and a 25% test set
® Privatize the training data

® Train a collaborative filtering recommender system

® Compare prediction accuracy on non-private test set

® Evaluation metric: Root mean square error
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Real-world benchmark analysis results

Dataset
UC Salary | Bank Marketing | MovielLens
Size 252,540 30,488 25,000,095
Type  Continuous Multivariate Discrete
Dim 1 10 1
Task Mean Est. Logistic Reg. Collaborative Filtering

DIP 040 (0.31) | 0.047 (0.003) 1.03 (4.96 x10~7)
LRM  13.08 (9.95) | 0.311 (0.004) 1.87 (1.03 x107?)
OPM  4.69 (3.44) Infinity 2.61 (8.23 x107%)
EXM N/A N/A 1.11 (5.52 x107*%)

Table 1: Privacy factor ¢ = 1. DIP holds out 25% data. DIP shows the
best performance in differentially private mean estimation, logistic
regression, and personalized recommendations.

Note: Essentially no loss of statistical accuracy by DIP
privatization while satisfying differential privacy.
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Conclusion

® Data Privacy (inference for privatized data)

® Holdout sample + Laplace noise — differential privacy.

® DIP-privatization satisfies the differential privacy standard while
retaining statistical accuracy of any downstream analysis.

® More work to expand to unstructured inference (Electrical Medical
Records),.., Monte Carlo inference.
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Thank you!
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