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This talk will focus on West Nile virus forecasting

e A brief introduction to West Nile virus

* Background research into the environmental determinants of West
Nile virus in South Dakota

* A modeling framework for West Nile virus forecasting
* Implementation a West Nile virus forecasting system

* Validation of West Nile virus forecasts in South Dakota
* Extensions to other states
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Introduction
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West Nile virus in the US

* Arrived in the US in 1999, spread
west across N. America by 2004

* Most common mosquito-borne
disease in the U.S.

* ~2,400 cases per year
* Highly variable —range: 21 to 9,862

« 70-80% of infections
asymptomatic

» Severe disease in ~1in 150

* Wild birds are the primary
reservoir hosts

* Humans are dead-end hosts
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National Arbovirus Surveillance System

Average annual incidence of West Nile virus neuroinvasive disease reported
to CDC by county, 1999-2020
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Seasonal and interannual variation of WNV cases

@© 1 250
o 151 »
= 2
9 & 200
5 2
D 4Nl =
o« 10 > 1501
o o
O =
L ® 100
O 9 =
= é 501
; =
4 T
o\°0'. ~= - o o = v- v
10 20 30 40 50 R R R R R DD DD D) D)
E p iwee k 009 000"007006‘006’00)00&00&07007707\3 07&07707«5‘076’07)076507«90‘30
State = SD M| OK = LA Case Counts =— SD Ml OK =— LA

% The UNIVERSITY of OKLAHOMA



Environmental factors influence WNV transmission through
multiple pathways.
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Background Research
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Two predominant mosquito species in South Dakota

-
\
Aedes vexans Culex tarsalis
Inland Floodwater Mosquito Western Encephalitis Mosquito
Eggs laid in flood-prone areas and hatch Standing water mosquito, breeds in natural and
simultaneously when inundated anthropogenic habitats with high organic content
Nuisance mosquito Vector of West Nile virus
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Aedes vexans is positively associated Culex tarsalis is positively associated

with wetlands and negatively with grasslands and negatively
associated with grasslands associated with developed areas
8 - 5 -
6 - 4
4+ 4+ 3 1
g 4 - o
2 22
¥ ¥
8 2 _l 8 1 _
e) e
3 B S o
'-é 0 m T T N B -é
S S .1 -
Vp] v o -
-4 - 3
6 - 4 -
Urban Forest Grass Crop Wetland Urban Forest Grass Crop Wetland

Weather and Land Cover Influences on Mosquito Populations in Sioux
Falls, South Dakota

TING-WU CHUANG,"? MICHAEL B. HILDRETH,*>* DENISE L. VANROEKEL,?
AND MICHAEL C. WIMBERLY"

T. Med. Entomol. 48(3): 669-679 (2011): DOL 10.1603/ ME10246
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Relationships between Culex
tarsalis and land cover affect the
geographic distribution of human
West Nile virus cases.

Higher WNV risk in grasslands, at
lower elevations, and on poorly
drained soils.

Lower WNYV risk in forests, at
higher elevations, and in cities

Am. J. Trop. Med. Hyg., 86(4), 2012, pp. 724-731
doi:10.4269/ajtmh.2012.11-0515
Copyright © 2012 by The American Society of Tropical Medicine and Hygiene

Landscape-Level Spatial Patterns of West Nile Virus Risk in the Northern Great Plains
Ting-Wu Chuang.* Christine W. Hockett, Lon Kightlinger. and Michael C. Wimberly

Geographic Information Science Center of Excellence, South Dakota State University, Brookings, South Dakota;
South Dakota Department of Health, Pierre, South Dakota
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We were able to map the
statewide patterns of WNV
risk using environmental
variables from multiple
sources:

 Elevation (digital elevation model)
* Humidity (interpolated climate data)
* Precipitation (interpolated climate

data)
° WetneSS index (MOD|S Satellite Relative risk percentile |
imagery) [T T | | County boundaries
. e . ) ’@ j\b‘ be) 9‘)& 9’% '\QQ No Data
. Lancflcover cIassTcatlon (Landsat S A S P
satellite imagery
GeoHealth

* Soil drainage (soil survey data)
Research Article =~ @ OpenAccess @ ® @ @
Identifying Environmental Risk Factors and Mapping the
Distribution of West Nile Virus in an Endemic Region of North
America
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Aedes vexans was positively influenced
by current temperature and lagged
precipitation (2-3 weeks in the past)
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Weather and Land Cover Influences on Mosquito Populations in Sioux
Falls, South Dakota

TING-WU CHUANG,"? MICHAEL B. HILDRETH,*>* DENISE L. VANROEKEL,?
AND MICHAEL C. WIMBERLY'!

J. Med. Entomol. 48(3): 669-679 (2011); DOIL: 10.1603/ ME10246

Culex tarsalis was positively influenced
by current temperature and lagged
temperature (1-2 weeks in the past)
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WNYV outbreaks are associated with positive 2012 Climate Anomalies
temperature anomalies during the WNV A sy Tmperar
season and the preceding spring/winter. "

. PLS Coefficients for 2004-
2012 WNV Incidence 2012 outbreak model
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Regional Variation of Climatic Influences on West Nile Virus Outbreaks in the United States

Michael C. Wimberly,* Aashis Lamsal, Paolla Giacomo, and Ting-Wu Chuang

Greospatial Sciences Center o f Excellence, South Dakota Swe Univerdty, Brookings, South Dakota Department of Paradslogy
and Center for Intermational Tropical Medicine, Tajpei Medical Univensaty, Taipes, Taiwan
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Modeling Framework
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Forecasting and surveillance of West Nile virus risk

* Risk varies geographically and over time
« Target prevention messages and vector control

« Reporting delayed by weeks or
months

 Lagging indicator of risk during
the WNV season

« Conducted weekly throughout
the WNV season

« WNV-infected mosquito pools
are associated with transmission

risk

« Data on temperature, humidity,
and precipitation available daily

« Weather affects mosquito and
bird populations and virus
development in mosquitoes
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Our approach combines mosquito surveillance data with
environmental monitoring data to predict human WNV cases
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Forecasting models
are calibrated with
data from preceding
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Distributed lags identify lagged meteorological effects over the past six
months and can vary over the course of the transmission season.

* Temperature effects are stronﬁest at the shortest lags, with longer-term effects (30-
90 day lags) decreasing over the transmission season.

 Effects of vapor pressure deficit are strongest in June and shift to longer lags during
the transmission season.

Temperature Vapor Pressure Deficit
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Seasonal increases in mosquito infection rates are modeled
using a logistic growth function.

Interannual variation in these rates is Spatial stratification captures geographic
associated with seasonal outbreak size. patterns of human cases
State stratification map
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Implementation
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Web-based Google Earth Engine App

Fit predictive models with
human, mosquito, and
weather data from
previous years

State surveillance databases

The UNIVERSITY of OKLAHOMA

Name

.Rproj.user
human case data
mosquito data
strata
weather data
0 .Rhistary
“L ArboMAP_Main_Code
[&] ArboMAP_Main_Code
“L ArboMAP_User_Guide

Date modified

10/6/2021 10:25 AM
6/18/2021 10:26 AM
6/18/2021 10:26 AM
6/18/2021 10:26 AM
6/18/2021 10:26 AM
6/17/2021 9:26 AM
6/17/2021 9:24 AM
6/17/2021 9:15 AM
6/16/2021 11:14 PM

Update current-year mosquito data

Arbovirus Monitoring and
Prediction (ArboMAP)
system

Run ArboMAP script in Rstudio via
web browser interface

nnnnnnnnnn
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Designed to be used by state
health departments for
operational WNV forecasting

Output




Completely
automated, menu-

driven, web-based

Semi-automated
system running on
local workstations

Rationale for the design of ArboMAP

Completely manual
using software on local
workstations

system

Easiest and quickest to
use

Centralized
maintenance

High cost for
development and
maintenance

Data sharing limitations
System integration
challenges
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(ArboMAP)

Considerably faster than
a fully manual approach
Implementable on a
variety of computers
Highly customizable

Troubleshooting on
diverse systems
Requires some manual
steps

R and RStudio can be
challenging for some
users

Minimal development
costs

Leverages existing
computer resources

Time and cost of data
analysis

Lack of consistency
Difficult to replicate



A G Oogl e Ea rt h E N g| ne Earth Engine Apps Q. Search places

. — o e T

a p p | icat i O n p rovi d e S GRIDMET Viewer & Data Downloader > . * l: | Layers | Map st

Version 2.2, Released 2022-04-20
L]
a C C e S S t O r I d d e d This Google Earth Engine script facilitates access to county- : -
level summaries of gridded meteorological data to support - :“ \
West Nile virus forecasting, however it can be also used for L ) % %
° any application needing these data. Users can select a U.S. Q = Py
I I I ete O ro O g I C a a ta state and date range to download a table of summarized ‘* ‘L
meteorological data by county. Users can also explore maps 4 s

of daily temperature anomalies, precipitation, vapor pressure
deficit, and relative humidity.

Automatically generates county-level Viewer

. . To visualize weather data on the map, select a date from the
ta b u Ia rsummaries th at dare rea d N by available data in the slider or calendar below. Under the Layers

dropdown menu on the map you can select which weather

A rbo M A P variable you want to see.

& 9 10 11 12 13 14 15 16

=
district fips doy year tminc tmeanc  tmaxc pr rmean  vpd Vs o
Codington 46029 241 2022 10.6508 18.00361 25.35643 0 5118069 1.199598 7.039887 o
Brown 26013 241 2022 10.22699 18.61046 2699392 0 55.86343 1253458 5.977255 Sep 16, 2022
Edmunds 26045 241 2022 10.629 18.8503 27.07159 0 53.58373 1.304932 5.862908
sully 26119 241 2022 1143182 20.32335 29.21488 0 49.80813 1.601839 5.110535
Hughes 26065 241 2022 1162862 20.54096 29.4533 0 49.28324 1.642936 4.588199 Downloader:
stanley 16117 241 2022 1229954 21.22396 30.1483% 0 47.53138 1761037 4.670611
Davison 46035 241]  2022| 11.83324| 2104885 30.26415 0| 42.61989 1.846022| 5.114336 Select a state and dates to download daily data by county.
Hanson 26061 241 2022 1156137 20.84423 30.1271 0 43.06917 1.822233 5.342723
Beadle 46005 241 2022 1053975 19.84745 29.15514 0 48.85021 1.606574 5.598668 R
Brookings 45011 241 2022 1031858 18.40501 26.49044 0 46.8909 1384374 6.573551 e
McCook 16087 241 2022 10.85209 19.9863 29.12051 0 43.90171 1.696626 5.833674
Minnehaha 46099 241 2022 10.9022 19.63794 28.37367 0 43.29024 1630269 6.182807 Download start date:
Lincaln 46083 241 2022 10.88606 20.14551 29.40495 0 45.47171 1.692342 5.475039
Turner 46125 241 2022 1107187 20.48755 29.30323 0 24.76177 1757634 5.494321 2027-08-16
Yankton 26135 241 2022 1128789 20.80838 30.32888 0 46.63622 1763626 4.827213
;uster 46033 241 2022 1156983 19.74449 27.91915 0 42.99915 1.667795 2.632135 Download end date (default latest available data date): L e 1%
eade 26093 241 2022 1202944 20.50135 28.97325 0 41.68096 1.782076 4.149048 .
Pennington 46103 241 2022 1137736 19.39441 28.41146 0 43.34108 1711369 3.528268 ~ Nicaragua
Lawrence 26081 241 2022 9.604772 17.34314  25.0815 0 43.83572 1.394663 4.252016 2022-09-16 {
Union 26127 241 2022 1048083 20.3885 30.29616 0 53.79768 1.614861 5.096313 Costa Rica
Clay 26027 241 2022 10.9793 20.80764 30.63597 0 49.38417 1.740207 5.041141 Click for summary downloads
Grant 46051 241 2022 10.98471 18.61747 26.25024 0 50.82275 1.278762 7.350341 - Keyboard shorteuts | Map data ©2022 Google, INEGI | 5007

https://dawneko.users.earthengine.app/view/arbomap-gridmet
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https://dawneko.users.earthengine.app/view/arbomap-gridmet

Results are displayed as text, charts, and maps

1 Forecast results

1.1 Forecast week WNV
absolute risk

1.2 Forecast week WNV
relative risk

1.3 Forecast year

1.4 Case estimation

1.5 Model fit statistics

1.6 Multi-year forecast
2 Input data summaries

3 Appendix

1 Forecast results

1.1 Forecast week WNV
absolute risk

1.2 Forecast week WNV/
relative risk

1.3 Forecast year

1.4 Case estimation

1.5 Model fit stafistics

1.6 Multi-year forecast
2 Input data summaries

3 Appendix

1 Forecast results

1.1 Forecast week WNV
absolute risk

1.2 Forecast week WNV
relative risk

1.4 Case estimation

1.5 Model fit statistics

1.6 Multi-year forecast
2 Input data summaries

3 Appendix

1 Forecast results

1.1 Forecast week WNV
absolute risk

1.2 Forecast week WNV
relative risk

1.3 Forecast year

1.4 Case estimation

1.6 Multi-year forecast
2 Input data summaries

3 Appendix

1 Forecast results

2 Input data summaries
2.2 Mosquito pools
2.3 Weather
2.4 Reference map
2.5 Parameters used

3 Appendix

1 Forecast results
2 Input data summaries
3 Appendix

3.1 Forecast results

3.1.1 Current-week WNV
absolute risk

3.1.2 Current-week WNV
relative risk

3.1.3 Current-year forecasts
3.1.4 Case estimations

3.1.5 Additional model fit
statistics

3.1.6 Partial effects
317 Multi-year forecasts
3.1.8 Models and formulas

3.2 Data summaries

3.1.6.1 Anomalized weather with fixed thin plate splines: “tp-fx-anom”

Component: s(lag,4.8):tmeanc_anom

tp-fx-anom
0.010-
0.005~
LR~ |
-0.005— - T T
0 50 100 150
lag

Component: s(lag,6.37).vpd_anom

tp-fx-anom
0.104
0.054
0.007
-0.054
0 50 100 150
lag

Component: s(doy,6.19)
tp-fx-anom

200 250
doy
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Validation
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Models were validated
by making
retrospective forecasts
from 2016-2019

m Environmental Health Perspectives

Vol. 130, No. 8 | Research

Integrated Forecasts Based on Public Health Surveillance and
Meteorological Data Predict West Nile Virus in a High-Risk
Region of North America

&) Open Access

Michael C. Wimberly = Justin K. Davis, Michael B. Hildreth, and Joshua L. Clayton

Published: 16 August 2022 | CID: 087006 | https://doi.org/10.1289/EHP10287
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For each forecast
year, update
calibration data
through the
preceding year

Model human cases
as a function of
mosquito and
environmental data

Mosquito + environmental
data through year y-1

Human case data through
year y-1

For each forecast
week, update
forecast year
data through the
current week

Mosq + Env data
through forecast

Generate forecasts
for every predicted
week in the
current year

Mosq + Env data
through forecast

Mosq + Env data Mosq + Env data
through forecast through forecast
week 3 week 17

Compute accuracy
statistics for each
forecast week




Environmental models outperformed
mosquito models in the early season

The baseline model included county-level

means and a seasonal trend.
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South Dakota Validation (2016-2019)

The best model, fitted to historical data,

captures seasonal and interannual variations

Solid and dashed lines show how

predictions change over the course

Forecasts
of the WNV season

] Calibration

201

151

|
.

Forecasts can distinguish years with
high case numbers (2016 and 2018)

—

from years with low case numbers
(2017 and 2019)

WNYV Positive Counties
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Forecasts based on environmental data predicted geographic
patterns of WNV cases as well as their timing.

Observed Positive Weeks

Prediction Error
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Extensions
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We have extended ArboMAP to other states

Michigan

South Dakota

Average annual
incidence rates in Oklahoma

cases per 100,000
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West Nile Virus Forecast Report for 2022-10-21
Louisiana
Arbovirus Modeling and Prediction [ArbuMAP}

West Nile Virus Forecast Report for 2022-07-19
Oklahoma
Arbovirus Modeling and Prediction (ArboMAP)

Dawn M. Nekorchuk, Justin K. Davis, and Michael C. Wimberly
(mewimberlvi@ion.edu)

Dawn M. Nekorchuk, Justin K. Davis, and Michael C. Wimberly

Geography and Env

Rep)

Louisiana ArboMAP West Nile Virus Forecast for 2022 Week 42

Statewide forecast made on 2022 Week 42

Geography and Enviroy

Repol

(mewimberlv@ou.edn)

‘Oklahoma ArboMAP West Nile Virus Forecast for 2022 Week 20

0.08
Contents Statewide forecast made on 2022 Week 29
2 1
1 Forecast results = I
i ; -
1.1 Forecast week WNV absolyl 8_0-05 ___ Historical ) Contents o 0.031 1
1.2 Forecast week WNV relativ] 2 average proportion = :
1.3 Torecast year . . . . . 2 — Backeast 1 Forecast results g 1 ___ Historical i
e ek N 3 L I 1 average proportion
1.4 Case estimation . . . . g 0.04 Forecast 1.1 Forecast week WNV absolute r B ! — B kg prope
1.5 Model fit statistics . . s £ 0.024 | ackeast
1.6 Multi-year forecast . . < 1.2 Forecast week WNV relative ri § : ---- Forecast
. £ 0.02 1.3 Forecast year 5
2 Input data summaries §- Range of all models - =4
2.1 Human ecases .. ... O 1.4 Case estimation . . . . . -g 0.014 \
2.2 Mosquito pools . . . . 1
3% Weather . . . .. 0.00 1.5 Model fit stat é— : Range of all models
2.4  Reference map 30 . 40 50 1.6 Multi-year forecast . . . o I
2.5 Parameters used Epiweek 0.00 !

2 Input data summaries 20 3‘0 40
3 Appendix 1.4 Case estimation Epiweek
3.1 Forecast results . . . . 2.1 Human cases
29 Data summaries ArboMAP models are based on ‘pasitive county-weeks’, the probability that a county would have at least one
. - human WNV case in a given week. These values can be used to predict a total number of cases, shown in 2.2 Mosquito pools . . . . .
the table below. . . 1.4 Case estimation
2.3 Weather . . .
Table 1: Estimated number of WNV cases 2.4 Reference map AthoMAP models are based on ‘positive county-weeks’, the probability that a county would have at least
Year Predicted positive county-weeks Average estimated cases (standard dev) Hange of estimated cases 25  Parameters used ?:Ii‘l table‘;el\l?wme in a given week. These values can be used to predict a total number of cases, shown

2022 32 37 (+/-7) 30 - 45

3 Appendix

Table 3: Estimated number of WNV cases

1.5 Model fit statistics 3.1 Forecast results . . . . . Predicted positive Average estimated cases (standard
Y Year county-weeks dev) Range of estimated cases
The following table gives a summary of how well the model is fitting the historical years. The Area Under the 3.2 Data summaries
2022 23 20 (+/-4) 17-24

ROC curve (AUC) is a statistic that ranges from 0 (model is right 0% of the time) to 1 (model is right 100%
of the time). Scores above 0.5 are better than a random model, with 0.7 generally considered acceptable
and 0.8 as good.

Table 2: Area Under Curve (AUC) statistics of all model fits

1.5 Model fit statistics

The following table gives a summary of how well the model is fitting the historical years. The Area Under the

Model Average AUC Min AUC  Max AUC ROC eurve (AUC) is a statistic that ranges from 0 {model is right 0% of the time) to 1 (model is right 100%
Average of all models 0.88 0.88 0.89 of the time). Scores above 0.5 are better than a random model, with 0.7 generally considered acceptable

The UNIVERSITY of OKLAHOMA

and >0.8 as good.

Table 4: Area Under Curve (AUC) statistics of all model fits

Model Average AUC  Min AUC Max AUC
Average of all models 0.9 0.9 0.91




Comparisons of forecast accuracy across based on
different environmental data sources (2019-2021)

Gridded Weather Data: Interpolated

meterological variables measured at
ground-based stations.
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Future prospects

New modeling approaches
e Other machine learning approaches
LOUISIANA

* Dynamic (SIR) type epidemiological models DEPARTMENT OF
New implementation approaches HEALTH

* More automated, cloud-based implementation
* Need to address political/organizational as well as technical
challenges
New diseases

. g_ould be applied to malaria and dengue as well as tick-borne skl oo Saciees
iseases

* Current forecasting approach better suited for endemic rather
than emerging diseases
For more information:
* GitHub Archive: https://github.com/EcoGRAPH/ArboMAP
* Lab Website: https://ecograph.net/
e Contact: mcwimberly@ou.edu
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