

5th Big Data Health Science Conference Columbia, SC. Feb 2-3, 2024

Improving Healthcare Delivery with AI: A Diagnostic and Prescriptive Recommender System

Damilare Ogungbesan Dr. Misagh Faezipour

Healthcare Informatics Program, Department of Engineering Technology Middle Tennessee State University (MTSU)

Problem Description

Gap between healthcare demand and available healthcare professionals

What could be the solution? Increase in health service efficiency?

Develop an AI based diagnostic system

□ Integrate electronic health record in to the system

□ Validate and assess accuracy of the system

Methodology

- Obtain electronic health record in form of dataset
- Create an AI model and train the model with the data

Random Forest Model

Name	Date of Birth	Gender	Symptoms	Causes	Disease	Medicine		
John Doe	05-15-1980	Male	Fever, Cough	Viral infection	Common Cold	Ibuprofen, Rest		
Jane Smith	08/10/1992	Female	Headache, fatigue	Stress	Migraine	Sumatriptan		

Importing the required libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix, f1_score, matthews_corrcoef

Data Preparation

Importing the dataset
data = pd.read_csv("medical data.csv")
data

	Name	DateOfBirth	Gender	Symptoms	Causes	Disease	Medicine
0	John Doe	15-05-1980	Male	Fever, Cough	Viral Infection	Common Cold	Ibuprofen, Rest
1	Jane Smith	10-08-1992	Female	Headache, Fatigue	Stress	Migraine	Sumatriptan
2	Michael Lee	20-02-1975	Male	Shortness of breath	Pollution	Asthma	Albuterol Inhaler
3	Emily Chen	03-11-1988	Female	Nausea, Vomiting	Food Poisoning	Gastroenteritis	Oral Rehydration
4	Alex Wong	12-06-2001	Male	Sore Throat	Bacterial Infection	Strep Throat	Penicillin

Data cleaning and encoding

```
# Removing the rows with NaN and encoding the data
data = data.dropna()
encoder = LabelEncoder()
encoded_data = data.copy()
for column in encoded_data.columns:
    if encoded_data[column].dtype == 'object':
        encoded_data[column] = encoder.fit_transform(encoded_data[column])
```


Diagnosis Prediction

Testing the model

y_pred = random_forest_model.predict(x_test)

```
# Splitting the data into features (x) and target (y)
x = encoded_data.drop(["Disease", "Medicine"],axis =1)
y = encoded_data["Disease"]
# Splitting the data for training and testing
x_train,x_test,y_train,y_test = train_test_split(x,y, test_size = 0.2, random_state = 30)
# creating a Randomforest modeL
random_forest_model = RandomForestClassifier(random_state = 30)
# Training the modeL
random_forest_model.fit(x_train, y_train)
```


Presciption Prediction

```
# Splitting the data into features (x) and target (y)
x = encoded_data.drop(["Medicine"],axis =1)
y = encoded_data["Medicine"]
# Splitting the data for training and testing
x_train,x_test,y_train,y_test = train_test_split(x,y, test_size = 0.2, random_state = 30)
# creating a Randomforest model
```

```
random_forest_model = RandomForestClassifier(random_state = 30)
```

```
# Training the model
random_forest_model.fit(x_train, y_train)
```

```
# Testing the model
y_pred = random_forest_model.predict(x_test)
```


Result

□ Electronic Health Record Dataset Size – 287 rows

□ Machine Learning Model – Random Forest

□ Disease Diagnosis Prediction Accuracy - 81.63%

□ Medicine Prescription Prediction Accuracy – 87.75%

Result

	Confusion Matrix														- 1 0																		
	0 -	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0			- 4.0
	ч-	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0			
	~ ~	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0			
	- π	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0			- 3.5
	4 -	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0			
	<u>ں</u> -	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0			
	9	0	0	0	0	0	1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0			
	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0			- 3.0
	- 00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0			
	6 -	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
	110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				-25
		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				2.0
a	31	0	0	0	0	0	0	0	0	0	0	0	0	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0			
de	4-	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0			
al L	2 -	0	ñ	ő	0 0	ñ	ñ	õ	0 0	õ	0 0	ñ	1	0 0	0	0	٦	0	ñ	ñ	ñ	0 0	ñ	ñ	ñ	ñ	ñ	0	ñ	0 0			- 2.0
ctu	61	ŏ	õ	õ	0	õ	0	õ	õ	õ	õ	0	0	õ	õ	0	0	3	0	0	õ	0	0	õ	0	õ	0	õ	0	0 0			
∢	71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0 0			
	8.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0 0			1 5
	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0			- 1.5
	201	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0 0			
	51.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0 0			
	22.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0 0			- 1.0
	- 53	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0 0			
	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0 0			
	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0			
	26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0 0			- 0.5
	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0 0			
	28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2 0	2		
	29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 2			- 0.0
		Ó	ì	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28 2	Э		0.0
Г			_		_		_			_	_			Pr	ed	icte	ed L	ab	el					-		_		_	-				٦
			Ċ	Dr	١f	u	si	0	n	Ν	Л	at	tri	iх	f	0	r	D	ia	g	n	0	st	:ic	2	Pr	'e	d	ic	tic	on		
- 1										- '	'					-	-	_	-	0		-						-					1

Result

13

Conclusion

The integration of artificial intelligence with healthcare delivery holds significant potential to transform the sector by providing enhanced patient outcomes, and improved diagnostic accuracy

References

- Secinaro S, Calandra D, Secinaro A, Muthurangu V, Biancone P. The role of artificial intelligence in healthcare: A structured literature review. BMC Medical Informatics and Decision Making, 2021; 21, 1-23.
- Tadiboina S.N Benefits of artificial intelligence in healthcare. Webology 2021; (ISSN:1735-188X), 18(5).
- Reddy S, Fox J, Purohit M. P. Artificial intelligence-enabled healthcare delivery. *Journal of the Royal Society of Medicine*, 2019; 112(1), 22-28

Contact Info: Damilare Ogungbesan Email: <u>dao2z@mtmail.mtsu.edu</u>