The 5th National Big Data Health Science Conference
University of South Carolina
Columbia, SC

Feb. 2 - 3, 2024

An Algorithm for the Constrained Longest Common
Subsequence and Substring Problem

Rao Ll
University of South Carolina Aiken

Joint work with Jyotishmoy Deka, Kaushik Deka, and Dorothy Li

Subsequences and Substrings

-Let > be an alphabet and S a string over Y. A subsequence of a string S IS
obtained by deleting zero or more letters from S.

If S=“ACGTU”, then “ATU” is a subsequence of S.

-A substring of a string S Is a subsequence of S consists of consecutive letters in S.

If S =“ACGTU”, then “CGT” is a substring of S, “ATU” is not a substring of S,

-Every substring of S is also a subsequence of S.

-The empty string is a subsequence and a substring of any string.

The Longest Common Subsequence Problem for Two Strings

-The longest common subsequence problem for two strings X and Y is to

find a longest string, denoted LCSSeq(X, Y), which is a subsequence

of both X and Y.

-Obviously, the set of LCSSeq(X, Y) and the set LCSSeq(Y, X) are the same.

ILCSSeq(X, Y)| = |LCSSeq(Y, X)|.

The Longest Common Substring Problem for Two Strings

-The longest common substring problem for two strings X and Y is to

find a longest string, denoted LCSStr(X, Y), which is a substring

of both X and Y.

-Obviously, the set of LCSStr(X, Y) and the set LCSStr(Y, X) are the same.

ILCSStr(X, Y)| = |LCSStr(Y, X)|.

The Longest Common Subsequence and Substring Problem for Two Strings

-In [1], Li, Deka, and Deka introduced the longest common subsequence and

substring problem for two strings X and Y which is to find a longest string,

denoted LCSSeqStr(X, Y), that is a subsequence of X and a substring Y.

-[1] R. Li, J. Deka, and K. Deka, An algorithm for the longest common

subsequence and substring problem, Journal of Math and Informatics

25 (2023) 77-81.

The Longest Common Subsequence and Substring Problem for Two Strings

-In general, the set of LCSSeqStr(X, Y) and the set LCSSeqStr(Y, X)

are not the same. |LCSSeqStr(X, Y)| # |LCSSeqStr(Y, X)|.

-In [1], Li, Deka, and Deka designed an algorithm for LCSSeqStr(X, Y). The time

and space complexities of the algorithm are O(|X| [Y]), where |X| and |Y| are the

lengths of strings X and Y, respectively.

Examples

- Suppose X = “GAAAACCCT” and Y = “GACACACT”.

-“AC” is a longest common substring for X (resp. Y) and Y (resp. X). Thus
ILCSStr(X, Y)| = [LCSStr(Y, X)| = 2.

-“ACT” is a longest common subsequence and substring for X and Y. Thus
|ILCSSeqStr(X, Y)| = 3.

-“ACCCT” is a longest common subsequence and substring for Y and X. Thus
|ILCSSeqStr(Y, X)| = 5.

-“GAAACT” is a longest common subsequence for X (resp. Y) and Y (resp. X).
Thus LCSSeq(X, Y)| = |LCSSeq(Y, X)| = 6.

The Three Problems

[ILCSStr(X, Y)| = [LCSStr(Y, X)| < |LCSSeqStr(X, Y)| <

ILCSSeq(X, Y)| = |LCSSeq(Y, X)|.

[ILCSStr(X, Y)| = [LCSStr(Y, X)| < |LCSSeqStr(Y, X)| <

ILCSSeq(X, Y)| = |LCSSeq(Y, X)|.

-ILCSStr(X, Y)| = [LCSStr(Y, X)| < min{|LCSSeqStr(X, Y)|, |[LCSSeqStr(Y, X)|}

< max {|LCSSeqStr(X, Y)|, [LCSSeqStr(Y, X)|}

<|LCSSeq(X, Y)| = |LCSSeq(Y, X)|.

The Problems

LCSSeq(X, Y) LCSStr(X, Y)
p=«“” LCSSeqStr(X, Y), [1] Li et al.
P — ¢ 9
CLCS(X, Y: P) CLCSSeqStr(X, Y; P)

[2] Tasi

The Constrained Longest Common Subsequence Problem for Two Strings

-Tsai [2] extended the longest common subsequence problem for two strings to
the constrained longest common subsequence problem for two strings and a

constrained string P.

-[2] Y. T. Tsai, The constrained longest common subsequence problem,

Information Processing Letters 88 (2003) 173-176.

10

The Constrained Longest Common Subsequence Problem for Two Strings

-For two strings X, Y, and a constrained string P, the constrained longest common
subsequence problem for two strings X and Y with respect to P is to find a longest
string Z: = CLCSSeq(X, Y; P) such that Z is a subsequence of both X and Y and

P is a subsequence of Z.

-Clearly, if P is an empty string, then CLCSSeq(X, Y; P) = LCSSeq(X, Y).

11

The Constrained Longest Common Subsequence Problem for Two Strings

-““Such a problem could arise in computing the homology of two biological

sequences which have a specific or putative structure in common’ quoted

from [2].

-Tsai [2] designed an O(|X? |Y|? |P|) time algorithm for CLCSSeq(X, Y; P).

12

The Constrained Longest Common Subsequence and Substring Problem for Two Strings

-Motivated by Tasi’s work, we introduced the constrained longest common

subsequence and substring problem for two strings and a constrained string.

13

The Constrained Longest Common Subsequence and Substring Problem for Two Strings

-For two strings X, Y, and a constrained string P, the constrained longest common

subsequence and substring problem for two strings X and Y with respect to P,

Is to find a longest string Z: = CLCSSeqStr(X, Y; P) such that Z is a

subsequence of X, a substring of Y, and P is a subsequence of Z.

-Clearly, if P is an empty string, then CLCSSeqStr(X, Y; P) = LCSSeqStr(X, Y)

in [1].

14

The Constrained Longest Common Subsequence and Substring Problem for Two Strings

-Suppose X = “GAAAACCCT”, Y = “GACACACT”, P =“AC”.

-“ACT” is a constrained longest common subsequence and substring for X and Y.

Thus |CLCSSeqgStr(X, Y; P)| = 3.

-“GAAACT” is a constrained longest common subsequence for Y (resp. X) and X

(resp. Y). Thus |[CLCSSeq(X, Y; P)| = |LCSSeq(Y, X; P)| =6.

-In general, |CLCSSeqStr(X, Y; P)| <|CLCSSeq(X, Y; P)|.

15

The Problems

LCSSeq(X, Y) LCSStr(X, Y)
p=«“” LCSSeqStr(X, Y), [1] Li et al.
P — ¢ 9
CLCS(X, Y: P) CLCSSeqStr(X, Y; P)

[2] Tasi
16

The Constrained Longest Common Subsequence and Substring Problem for Two Strings

-Using dynamic programing (DP), we designed an algorithm for finding
CLCSSeqStr(X, Y; P). Both time complexity and space complexity of our

algorithm are O(|X| |Y] |P]).

17

The Algorithm

-Let S =5, s, ... S, be a string over an alphabet), The r prefixes of
Saredefinedas S; =s; S,=5S,, S3=5,5,S3, ..., and S, =5, S, ... S..

S, Is defined as an empty string.

-The r suffixes of S are definedas T, =s;S,...5, T, =5,S;5 ... S, ..., T, =S4,

and T, =s,

18

The Algorithm

Let X=X X ... X, Y =V, Y, .. Y, and P = p, p, ... p,. Define Z[i, j, K] as a string
satisfying the following conditions.

(1) itis a subsequence of X;=X; X, ... X;

(2) itisasuffixof Y=y, y,...y;

(3)ithas P, =p, p, ... p,as a subsequence,

(4) under (1), (2) and (3), its length is as large as possible,

where] <i<m,1<j<n,and 1 < k<r.

19

The Algorithm

-We will use a 3-dimensional array M[m + 1][n + 1][r + 1] to store |Z[i, j, K]|.

Namely, M[i][j][k] = |Z[1, j, k]|, where 0 < i< m,0< j< n,0<k<r.

-We will recursively fill in the cells in M.

-Firstly, we fill in the boundary cells in array M.

20

The Algorithm
-Filling in the boundary cells.
[1] Ifi=0and k = 0 the length of a string which is a subsequence of X;, a suffix of Y;, and
has P, as a subsequence is zero. Thus M[0][j][0] = 0, where 0 <j <n.

) Ape)
4 } .
I
|
.3’_ :\
[
—Px
| O R
; //‘
—
e |
g . < | Y Y, Y . - - o)
- / - i — — — Y
| - .// PQ (o o O/
‘ Aoo// Z . .
| X
o« O
X

21

The Algorithm
-Filling in the boundary cells.
[2] Ifj=0and k=0, the length of a string which is a subsequence of X;, a suffix of Y;, and
has P, as a subsequence is zero. Thus M[i][0][0] = 0, where 0 <i<m.

L
. e p
7, v
v } .
|
5
[?2- 3
f
g —69 P._ J“DC 7:“20 ' 4 L L] —_— 0
3 g
—
4]
; . 2 | Yo Y, Yo o = . I e
- / . Z— — —_ S —
| v // P() O o O/
| 00~ % o

22

The Algorithm
-Filling in the boundary cells.
[3] Ifi=0 and k > 1, there is not a string which is a subsequence of X;, a suffix of
Y;, and has P, as a subsequence. Thus M[O][j][K] = -oo, where 0 <j<nand 1 <k <r.

[=

AP
4, "
4 Y- .
i
|
[2 1’)2_ 3
|
—Bc
g 69 Pl_ - _:_(;)’O # > - —_— g
! e
—
d |
| . Z, '3,, Y 8 * » o grrl Y
- / b — — — — -
r - P, o o e/
| _eo / Z 4 .
| A
o)
X

23

The Algorithm

-Filling in the boundary cells.
[4] If j = 0 and k > 1, there is not a string which is a subsequence of X;, a suffix of Y;, and has
P, as a subsequence. Thus M[i][0][K] = -o0, where 0 <i<mand 1 <k <r.

AP
Y, ;
P g .
f
|
[] F%?_ !;
|
E 69 Pl_ 1& 7:“(30 # -» ™ — g
e
—
ed v
1 - /{o ?:’ U y -> - - grr} Y
P / - ————r — _— —
| - ./’/ Po o o O/
| o / Zr -
[Xm
!’,O
X

24

The Algorithm

-Filling in the boundary cells.

[5] If k =0 or P, is an empty string. Then CLCSSeqStr(X, Y; P,) = LCSSeqStr(X, Y) in [1]. The cells of
M[1][;][0], where 1 <1<m and 1 <j <n, can be filled in by the following rules.
I x; = y;, then M[i][i][0] = M[i - 1][j - 1][0] + 1. If x; # y;, then M[i][j][0] = M[i - 1][j][C].

) =
APe

25

The Algorithm
-Filling in other cells.

-Claim 1. Suppose that X;=X; X, ... X;, Y;=VY; Y, ... ¥; and P, =p; p, ... Py,
where 1 < i< m,1<j<n 1 <k<r.IfZ[i,j,k]=2,2,..2,isa

string satisfying conditions

(1) itis a subsequence of X;=X; X, ... X;

(2) itisasuffixof Y=y, y,...y;

(3)ithas P, =p, p, ... p,as a subsequence,

(4) under (1), (2) and (3), its length is as large as possible,

where 1 <i<m,1<j<n,and 1< k<r.

Then we have only the following possible cases and the statement in each case is

true.
26

The Algorithm
-Filling in other cells.

-Claim 1.
Case 1. x;=y; = py- We have |Z[i, J, k]| = [Z[i - 1,] - 1, k - 1]| + 1 in this case.

Case 2. X; = Y; # px- We have |Z]i, J, K]| = |Z[1 - 1,] - 1, k]| + 1 In this case.

Case 3. X; # yj, X # P and y; = p,. We have |Z]1, J, K]| = |Z[i - 1, J, k]| In this case.

Case 4. X; # yj, X # P and y; # p. We have |Z]i, J, K]| = |Z[i - 1, J, k]| In this case.

Case 5. X; # yj, X; = Py, and y;# py. This case cannot happen.
27

The Algorithm

-Filling in other cells.

-Claim 2. Suppose there is not a string which is a subsequence of X; = X; X, ... X;,
a sufficeof Y;=vy, y, ... y; and has P, = p; p, ... py, as a subsequence, where

1<i1i<m,1<j<n,1<k<r Namely, Z[1, j, k] doesn’t exist. Then

[1]. If X; = y; = Py then there is not a string which is a subsequence of X; _,
=Xy Xy . Xj_ g, asuffixof Y; =y, y,...y; j,andhas Py =p;py .. Py4
as a subsequence. Namely, if Z[i, j, K] does not exist, then Z[i-1,j -1, k- 1]

does not exist either.
28

The Algorithm

-Filling in other cells.

-Claim 2.

[2]. If X; = y; # py, then there is not a string which is a subsequence of
Xi 1 =X Xy X, asuffixof Y =y, y, ... y;.q, and has P, = p; p, ... py
as a subsequence. Namely, if Z[i, j, K] does not exist, then Z[i- 1, j - 1, K]

does not exist either.

29

The Algorithm

-Filling in other cells.

-Claim 2.

[3]. If X; # Yj» Xi # Pio and Yi = Pis then there is not a string which is a
subsequence of X;_; = X; X, ... X;_ 1, a suffix of Y; =y, y, ... y;, and has
P.= P, P, ... Py @s a subsequence. Namely, if Z[i, J, k] does not exist, then

Z[i -1, j, k] does not exist either.

30

The Algorithm

-Filling in other cells.

-Claim 2.

[4]. 1T X; # ¥, X; # P, @nd Y; # py, then there is not a string which is a
subsequence for X;_; =X; X, ... X;_1, a suffixof Y;=y,y, ... y;, and has
P.=P;P5 .- Py @S a subsequence. Namely, if Z]i, j, k] does not exist,

then Z[i - 1, j, k] does not exist either.

31

The Algorithm

-Claim 3. Let U, be a longest string which is a subsequence of X, a substring of Y,
and has P, as a subsequence. Then |U,| = max{|Z[i, j, k]| : 1< i< m,1<j<n, 1 <k<r}.
Thus |U/| =max{|Z[i,], r]|: 1 < i< m, 1 £ j< n} =|CLCSSubStr(X, Y; P)|.

V _Pr —H
{ o
P &
E -
]
i‘ -
- TR %
g i
j —b9 P‘__:f__*—a_.c’o__ﬂ____‘..__: {
!
s
P | |
] - Y ‘5 ¥, > - - ‘
| P Y D Ya e -]y
| - PR o o /
E -~ < :
.fc‘o/ ’/ o |
v -7
>
~
| o
X &

32

The Algorithm

[|CLCSSeqStr(X, Y; P)| = max {M[i][j][r]: 0 <i<m, 0 <j<n.

-We can also find the CLCSSeqStr(X, Y; P) when we write a program.

-The time complexity of our algorithm is

O((IX]+ D)(Y]+ 1)(IP| + 1)) ~ O(X] [Y] [P]).

-The space complexity of our algorithm also is

O((IX]+ D)(Y]+ 1)(P| + 1)) ~ O(X] [Y] [P]).

33

Thanks

34

	Slide 1: The 5th National Big Data Health Science Conference University of South Carolina Columbia, SC Feb. 2 - 3, 2024
	Slide 2: Subsequences and Substrings
	Slide 3: The Longest Common Subsequence Problem for Two Strings
	Slide 4: The Longest Common Substring Problem for Two Strings
	Slide 5: The Longest Common Subsequence and Substring Problem for Two Strings
	Slide 6: The Longest Common Subsequence and Substring Problem for Two Strings
	Slide 7: Examples
	Slide 8: The Three Problems
	Slide 9: The Problems
	Slide 10: The Constrained Longest Common Subsequence Problem for Two Strings
	Slide 11: The Constrained Longest Common Subsequence Problem for Two Strings
	Slide 12: The Constrained Longest Common Subsequence Problem for Two Strings
	Slide 13: The Constrained Longest Common Subsequence and Substring Problem for Two Strings
	Slide 14: The Constrained Longest Common Subsequence and Substring Problem for Two Strings
	Slide 15: The Constrained Longest Common Subsequence and Substring Problem for Two Strings
	Slide 16: The Problems
	Slide 17: The Constrained Longest Common Subsequence and Substring Problem for Two Strings
	Slide 18: The Algorithm
	Slide 19: The Algorithm
	Slide 20: The Algorithm
	Slide 21: The Algorithm
	Slide 22: The Algorithm
	Slide 23: The Algorithm
	Slide 24: The Algorithm
	Slide 25: The Algorithm
	Slide 26: The Algorithm
	Slide 27: The Algorithm
	Slide 28: The Algorithm
	Slide 29: The Algorithm
	Slide 30: The Algorithm
	Slide 31: The Algorithm
	Slide 32: The Algorithm
	Slide 33: The Algorithm
	Slide 34

