
1

The 5th National Big Data Health Science Conference

University of South Carolina

Columbia, SC

Feb. 2 - 3, 2024

An Algorithm for the Constrained Longest Common

Subsequence and Substring Problem

Rao Li

University of South Carolina Aiken

Joint work with Jyotishmoy Deka, Kaushik Deka, and Dorothy Li

2

Subsequences and Substrings

-Let ∑ be an alphabet and S a string over ∑. A subsequence of a string S is

obtained by deleting zero or more letters from S.

If S = “ACGTU”, then “ATU” is a subsequence of S.

-A substring of a string S is a subsequence of S consists of consecutive letters in S.

If S = “ACGTU”, then “CGT” is a substring of S, “ATU” is not a substring of S,

-Every substring of S is also a subsequence of S.

-The empty string is a subsequence and a substring of any string.

3

The Longest Common Subsequence Problem for Two Strings

-The longest common subsequence problem for two strings X and Y is to

find a longest string, denoted LCSSeq(X, Y), which is a subsequence

of both X and Y.

-Obviously, the set of LCSSeq(X, Y) and the set LCSSeq(Y, X) are the same.

|LCSSeq(X, Y)| = |LCSSeq(Y, X)|.

4

The Longest Common Substring Problem for Two Strings

-The longest common substring problem for two strings X and Y is to

find a longest string, denoted LCSStr(X, Y), which is a substring

of both X and Y.

-Obviously, the set of LCSStr(X, Y) and the set LCSStr(Y, X) are the same.

|LCSStr(X, Y)| = |LCSStr(Y, X)|.

5

The Longest Common Subsequence and Substring Problem for Two Strings

-In [1], Li, Deka, and Deka introduced the longest common subsequence and

substring problem for two strings X and Y which is to find a longest string,

denoted LCSSeqStr(X, Y), that is a subsequence of X and a substring Y.

-[1] R. Li, J. Deka, and K. Deka, An algorithm for the longest common

subsequence and substring problem, Journal of Math and Informatics

25 (2023) 77-81.

6

The Longest Common Subsequence and Substring Problem for Two Strings

-In general, the set of LCSSeqStr(X, Y) and the set LCSSeqStr(Y, X)

are not the same. |LCSSeqStr(X, Y)| ≠ |LCSSeqStr(Y, X)|.

-In [1], Li, Deka, and Deka designed an algorithm for LCSSeqStr(X, Y). The time

and space complexities of the algorithm are O(|X| |Y|), where |X| and |Y| are the

lengths of strings X and Y, respectively.

7

Examples

- Suppose X = “GAAAACCCT” and Y = “GACACACT”.

-“AC” is a longest common substring for X (resp. Y) and Y (resp. X). Thus

|LCSStr(X, Y)| = |LCSStr(Y, X)| = 2.

-“ACT” is a longest common subsequence and substring for X and Y. Thus

|LCSSeqStr(X, Y)| = 3.

-“ACCCT” is a longest common subsequence and substring for Y and X. Thus

|LCSSeqStr(Y, X)| = 5.

-“GAAACT” is a longest common subsequence for X (resp. Y) and Y (resp. X).

Thus LCSSeq(X, Y)| = |LCSSeq(Y, X)| = 6.

8

The Three Problems

-|LCSStr(X, Y)| = |LCSStr(Y, X)| ≤ |LCSSeqStr(X, Y)| ≤

|LCSSeq(X, Y)| = |LCSSeq(Y, X)|.

-|LCSStr(X, Y)| = |LCSStr(Y, X)| ≤ |LCSSeqStr(Y, X)| ≤

|LCSSeq(X, Y)| = |LCSSeq(Y, X)|.

-|LCSStr(X, Y)| = |LCSStr(Y, X)| ≤ min{|LCSSeqStr(X, Y)|, |LCSSeqStr(Y, X)|}

≤ max{|LCSSeqStr(X, Y)|, |LCSSeqStr(Y, X)|}

≤ |LCSSeq(X, Y)| = |LCSSeq(Y, X)|.

9

The Problems

LCSSeq(X, Y) LCSStr(X, Y)

P = “ ” LCSSeqStr(X, Y), [1] Li et al.

P = “ ”

CLCS(X, Y; P) CLCSSeqStr(X, Y; P)

[2] Tasi

10

The Constrained Longest Common Subsequence Problem for Two Strings

-Tsai [2] extended the longest common subsequence problem for two strings to

the constrained longest common subsequence problem for two strings and a

constrained string P.

-[2] Y. T. Tsai, The constrained longest common subsequence problem,

Information Processing Letters 88 (2003) 173-176.

11

The Constrained Longest Common Subsequence Problem for Two Strings

-For two strings X, Y, and a constrained string P, the constrained longest common

subsequence problem for two strings X and Y with respect to P is to find a longest

string Z: = CLCSSeq(X, Y; P) such that Z is a subsequence of both X and Y and

P is a subsequence of Z.

-Clearly, if P is an empty string, then CLCSSeq(X, Y; P) = LCSSeq(X, Y).

12

The Constrained Longest Common Subsequence Problem for Two Strings

-“Such a problem could arise in computing the homology of two biological

sequences which have a specific or putative structure in common” quoted

from [2].

-Tsai [2] designed an O(|X2 |Y|2 |P|) time algorithm for CLCSSeq(X, Y; P).

13

The Constrained Longest Common Subsequence and Substring Problem for Two Strings

-Motivated by Tasi’s work, we introduced the constrained longest common

subsequence and substring problem for two strings and a constrained string.

14

The Constrained Longest Common Subsequence and Substring Problem for Two Strings

-For two strings X, Y, and a constrained string P, the constrained longest common

subsequence and substring problem for two strings X and Y with respect to P,

is to find a longest string Z: = CLCSSeqStr(X, Y; P) such that Z is a

subsequence of X, a substring of Y, and P is a subsequence of Z.

-Clearly, if P is an empty string, then CLCSSeqStr(X, Y; P) = LCSSeqStr(X, Y)

in [1].

15

The Constrained Longest Common Subsequence and Substring Problem for Two Strings

-Suppose X = “GAAAACCCT”, Y = “GACACACT”, P = “AC”.

-“ACT” is a constrained longest common subsequence and substring for X and Y.

Thus |CLCSSeqStr(X, Y; P)| = 3.

-“GAAACT” is a constrained longest common subsequence for Y (resp. X) and X

(resp. Y). Thus |CLCSSeq(X, Y; P)| = |LCSSeq(Y, X; P)| = 6.

-In general, |CLCSSeqStr(X, Y; P)| ≤ |CLCSSeq(X, Y; P)|.

16

The Problems

LCSSeq(X, Y) LCSStr(X, Y)

P = “ ” LCSSeqStr(X, Y), [1] Li et al.

P = “ ”

CLCS(X, Y; P) CLCSSeqStr(X, Y; P)

[2] Tasi

17

The Constrained Longest Common Subsequence and Substring Problem for Two Strings

-Using dynamic programing (DP), we designed an algorithm for finding

CLCSSeqStr(X, Y; P). Both time complexity and space complexity of our

algorithm are O(|X| |Y| |P|).

18

The Algorithm

-Let S = s1 s2 ... sr be a string over an alphabet ∑, The r prefixes of

S are defined as S1 = s1, S2 = s1s2, S3 = s1 s2 s3, …, and Sr = s1 s2 ... sr.

S0 is defined as an empty string.

-The r suffixes of S are defined as T1 = s1 s2 ... sr, T2 = s2 s3 ... sr, ..., Tr-1 = sr-1sr,

and Tr = sr,

19

The Algorithm

-Let X = x1 x2 ... xm, Y = y1 y2 ... yn, and P = p1 p2 ... pr. Define Z[i, j, k] as a string

satisfying the following conditions.

(1) it is a subsequence of Xi = x1 x2 ... xi,

(2) it is a suffix of Yj = y1 y2 ... yj,

(3) it has Pk = p1 p2 ... pk as a subsequence,

(4) under (1), (2) and (3), its length is as large as possible,

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ r.

20

The Algorithm

-We will use a 3-dimensional array M[m + 1][n + 1][r + 1] to store |Z[i, j, k]|.

Namely, M[i][j][k] = |Z[i, j, k]|, where 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ r.

-We will recursively fill in the cells in M.

-Firstly, we fill in the boundary cells in array M.

21

The Algorithm

-Filling in the boundary cells.

[1] If i = 0 and k = 0 the length of a string which is a subsequence of Xi, a suffix of Yj, and

has Pk as a subsequence is zero. Thus M[0][j][0] = 0, where 0 ≤ j ≤ n.

22

The Algorithm

-Filling in the boundary cells.

[2] If j = 0 and k = 0, the length of a string which is a subsequence of Xi, a suffix of Yj, and

has Pk as a subsequence is zero. Thus M[i][0][0] = 0, where 0 ≤ i ≤ m.

23

The Algorithm

-Filling in the boundary cells.

[3] If i = 0 and k ≥ 1, there is not a string which is a subsequence of Xi, a suffix of

Yj, and has Pk as a subsequence. Thus M[0][j][k] = -∞, where 0 ≤ j ≤ n and 1 ≤ k ≤ r.

24

The Algorithm

-Filling in the boundary cells.

[4] If j = 0 and k ≥ 1, there is not a string which is a subsequence of Xi, a suffix of Yj, and has

Pk as a subsequence. Thus M[i][0][k] = -∞, where 0 ≤ i ≤ m and 1 ≤ k ≤ r.

25

The Algorithm

-Filling in the boundary cells.

[5] If k = 0 or Pk is an empty string. Then CLCSSeqStr(X, Y; Pk) = LCSSeqStr(X, Y) in [1]. The cells of

M[i][j][0], where 1 ≤ i ≤ m and 1 ≤ j ≤ n, can be filled in by the following rules.

If xi = yj, then M[i][j][0] = M[i - 1][j - 1][0] + 1. If xi ≠ yj, then M[i][j][0] = M[i - 1][j][0].

26

The Algorithm

-Filling in other cells.

-Claim 1. Suppose that Xi = x1 x2 ... xi, Yj = y1 y2 ... yj, and Pk = p1 p2 ... pk,

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ r. If Z[i, j, k] = z1 z2 ... za is a

string satisfying conditions

(1) it is a subsequence of Xi = x1 x2 ... xi,

(2) it is a suffix of Yj = y1 y2 ... yj,

(3) it has Pk = p1 p2 ... pk as a subsequence,

(4) under (1), (2) and (3), its length is as large as possible,

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ r.

Then we have only the following possible cases and the statement in each case is

true.

27

The Algorithm

-Filling in other cells.

-Claim 1.

Case 1. xi = yj = pk. We have |Z[i, j, k]| = |Z[i - 1, j - 1, k - 1]| + 1 in this case.

Case 2. xi = yj ≠ pk. We have |Z[i, j, k]| = |Z[i - 1, j - 1, k]| + 1 in this case.

Case 3. xi ≠ yj, xi ≠ pk, and yj = pk. We have |Z[i, j, k]| = |Z[i - 1, j, k]| in this case.

Case 4. xi ≠ yj, xi ≠ pk, and yj ≠ pk. We have |Z[i, j, k]| = |Z[i - 1, j, k]| in this case.

Case 5. xi ≠ yj, xi = pk, and yj ≠ pk. This case cannot happen.

28

The Algorithm

-Filling in other cells.

-Claim 2. Suppose there is not a string which is a subsequence of Xi = x1 x2 ... xi,

a suffice of Yj = y1 y2 ... yj, and has Pk = p1 p2 ... pk, as a subsequence, where

1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ r. Namely, Z[i, j, k] doesn’t exist. Then

[1]. If xi = yj = pk, then there is not a string which is a subsequence of Xi - 1

= x1 x2 ... xi - 1, a suffix of Yj - 1 = y1 y2 ... yj - 1, and has Pk - 1 = p1 p2 ... pk - 1

as a subsequence. Namely, if Z[i, j, k] does not exist, then Z[i - 1, j - 1, k - 1]

does not exist either.

29

The Algorithm

-Filling in other cells.

-Claim 2.

[2]. If xi = yj ≠ pk, then there is not a string which is a subsequence of

Xi - 1 = x1 x2 ... xi - 1, a suffix of Yj - 1 = y1 y2 ... yj - 1, and has Pk = p1 p2 ... pk

as a subsequence. Namely, if Z[i, j, k] does not exist, then Z[i - 1, j - 1, k]

does not exist either.

30

The Algorithm

-Filling in other cells.

-Claim 2.

[3]. If xi ≠ yj, xi ≠ pk, and yj = pk, then there is not a string which is a

subsequence of Xi - 1 = x1 x2 ... xi - 1, a suffix of Yj = y1 y2 ... yj, and has

Pk = p1 p2 ... pk as a subsequence. Namely, if Z[i, j, k] does not exist, then

Z[i - 1, j, k] does not exist either.

31

The Algorithm

-Filling in other cells.

-Claim 2.

[4]. If xi ≠ yj, xi ≠ pk, and yj ≠ pk, then there is not a string which is a

subsequence for Xi - 1 = x1 x2 ... xi - 1, a suffix of Yj = y1 y2 ... yj, and has

Pk = p1 p2 ... pk as a subsequence. Namely, if Z[i, j, k] does not exist,

then Z[i - 1, j, k] does not exist either.

32

The Algorithm

-Claim 3. Let Uk be a longest string which is a subsequence of X, a substring of Y,

and has Pk as a subsequence. Then |Uk| = max{|Z[i, j, k]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ r}.

Thus |Ur| = max{|Z[i, j, r]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n} = |CLCSSubStr(X, Y; P)|.

33

The Algorithm

-|CLCSSeqStr(X, Y; P)| = max{M[i][j][r]: 0 ≤ i ≤ m, 0 ≤ j ≤ n}.

-We can also find the CLCSSeqStr(X, Y; P) when we write a program.

-The time complexity of our algorithm is

O((|X| + 1)(|Y| + 1)(|P| + 1)) ~ O(|X| |Y| |P|).

-The space complexity of our algorithm also is

O((|X| + 1)(|Y| + 1)(|P| + 1)) ~ O(|X| |Y| |P|).

34

Thanks

	Slide 1: The 5th National Big Data Health Science Conference University of South Carolina Columbia, SC Feb. 2 - 3, 2024
	Slide 2: Subsequences and Substrings
	Slide 3: The Longest Common Subsequence Problem for Two Strings
	Slide 4: The Longest Common Substring Problem for Two Strings
	Slide 5: The Longest Common Subsequence and Substring Problem for Two Strings
	Slide 6: The Longest Common Subsequence and Substring Problem for Two Strings
	Slide 7: Examples
	Slide 8: The Three Problems
	Slide 9: The Problems
	Slide 10: The Constrained Longest Common Subsequence Problem for Two Strings
	Slide 11: The Constrained Longest Common Subsequence Problem for Two Strings
	Slide 12: The Constrained Longest Common Subsequence Problem for Two Strings
	Slide 13: The Constrained Longest Common Subsequence and Substring Problem for Two Strings
	Slide 14: The Constrained Longest Common Subsequence and Substring Problem for Two Strings
	Slide 15: The Constrained Longest Common Subsequence and Substring Problem for Two Strings
	Slide 16: The Problems
	Slide 17: The Constrained Longest Common Subsequence and Substring Problem for Two Strings
	Slide 18: The Algorithm
	Slide 19: The Algorithm
	Slide 20: The Algorithm
	Slide 21: The Algorithm
	Slide 22: The Algorithm
	Slide 23: The Algorithm
	Slide 24: The Algorithm
	Slide 25: The Algorithm
	Slide 26: The Algorithm
	Slide 27: The Algorithm
	Slide 28: The Algorithm
	Slide 29: The Algorithm
	Slide 30: The Algorithm
	Slide 31: The Algorithm
	Slide 32: The Algorithm
	Slide 33: The Algorithm
	Slide 34

