The 5th National Big Data Health Science Conference University of South Carolina Columbia, SC

Feb. 2-3, 2024

An Algorithm for the Constrained Longest Common Subsequence and Substring Problem

Rao Li
University of South Carolina Aiken

Joint work with Jyotishmoy Deka, Kaushik Deka, and Dorothy Li

Subsequences and Substrings

-Let \sum be an alphabet and \mathbf{S} a string over \sum. A subsequence of a string \mathbf{S} is obtained by deleting zero or more letters from \mathbf{S}.

If $\mathbf{S}=$ "ACGTU", then "ATU" is a subsequence of \mathbf{S}.
-A substring of a string \mathbf{S} is a subsequence of S consists of consecutive letters in \mathbf{S}.

If $\mathbf{S}=$ "ACGTU", then "CGT" is a substring of \mathbf{S}, "ATU" is not a substring of \mathbf{S},
-Every substring of \mathbf{S} is also a subsequence of \mathbf{S}.
-The empty string is a subsequence and a substring of any string.

The Longest Common Subsequence Problem for Two Strings

-The longest common subsequence problem for two strings X and Y is to
find a longest string, denoted $\operatorname{LCSSeq}(\mathrm{X}, \mathrm{Y})$, which is a subsequence
of both X and Y .
-Obviously, the set of $\operatorname{LCSSeq}(\mathrm{X}, \mathrm{Y})$ and the set $\operatorname{LCSSeq}(\mathrm{Y}, \mathrm{X})$ are the same.
$|\operatorname{LCSSeq}(\mathrm{X}, \mathrm{Y})|=|\operatorname{LCSSeq}(\mathrm{Y}, \mathrm{X})|$.

The Longest Common Substring Problem for Two Strings

-The longest common substring problem for two strings X and Y is to
find a longest string, denoted $\operatorname{LCSStr}(\mathrm{X}, \mathrm{Y})$, which is a substring
of both X and Y .
-Obviously, the set of $\operatorname{LCSStr}(\mathrm{X}, \mathrm{Y})$ and the set $\operatorname{LCSStr}(\mathrm{Y}, \mathrm{X})$ are the same.
$|\operatorname{LCSStr}(\mathrm{X}, \mathrm{Y})|=|\operatorname{LCSStr}(\mathrm{Y}, \mathrm{X})|$.

The Longest Common Subsequence and Substring Problem for Two Strings

-In [1], Li, Deka, and Deka introduced the longest common subsequence and
substring problem for two strings X and Y which is to find a longest string,
denoted LCSSeqStr(X, Y), that is a subsequence of X and a substring Y .
-[1] R. Li, J. Deka, and K. Deka, An algorithm for the longest common
subsequence and substring problem, Journal of Math and Informatics

25 (2023) 77-81.

The Longest Common Subsequence and Substring Problem for Two Strings

-In general, the set of $\operatorname{LCSSeqStr}(\mathrm{X}, \mathrm{Y})$ and the set $\operatorname{LCSSeqStr}(\mathrm{Y}, \mathrm{X})$
are not the same. $|\operatorname{LCSSeqStr}(\mathrm{X}, \mathrm{Y})| \neq|\operatorname{LCSSeqStr}(\mathrm{Y}, \mathrm{X})|$.
-In [1], Li, Deka, and Deka designed an algorithm for LCSSeqStr(X, Y). The time
and space complexities of the algorithm are $\mathrm{O}(|\mathrm{X}||\mathrm{Y}|)$, where $|\mathrm{X}|$ and $|\mathrm{Y}|$ are the
lengths of strings X and Y , respectively.

Examples

- Suppose $\mathbf{X}=$ "GAAAACCCT" and $\mathbf{Y}=$ "GACACACT".
-"AC" is a longest common substring for \mathbf{X} (resp. \mathbf{Y}) and \mathbf{Y} (resp. \mathbf{X}). Thus $|\operatorname{LCSStr}(\mathbf{X}, \mathbf{Y})|=|\operatorname{LCSStr}(\mathbf{Y}, \mathbf{X})|=2$.
-"ACT" is a longest common subsequence and substring for \mathbf{X} and \mathbf{Y}. Thus $|\operatorname{LCSSeq} \operatorname{Str}(\mathbf{X}, \mathbf{Y})|=3$.
-"ACCCT" is a longest common subsequence and substring for \mathbf{Y} and \mathbf{X}. Thus $|\operatorname{LCSSeq} \operatorname{Str}(\mathbf{Y}, \mathbf{X})|=5$.
-"GAAACT" is a longest common subsequence for \mathbf{X} (resp. \mathbf{Y}) and \mathbf{Y} (resp. \mathbf{X}). $\operatorname{Thus} \operatorname{LCSSeq}(\mathbf{X}, \mathbf{Y})|=|\operatorname{LCSSeq}(\mathbf{Y}, \mathbf{X})|=6$.

The Three Problems

$-|\operatorname{LCSStr}(\mathrm{X}, \mathrm{Y})|=|\operatorname{LCSStr}(\mathrm{Y}, \mathrm{X})| \leq|\operatorname{LCSSeqStr}(\mathrm{X}, \mathrm{Y})| \leq$
$|\operatorname{LCSSeq}(\mathrm{X}, \mathrm{Y})|=|\operatorname{LCSSeq}(\mathrm{Y}, \mathrm{X})|$.
$-|\operatorname{LCSStr}(\mathrm{X}, \mathrm{Y})|=|\operatorname{LCSStr}(\mathrm{Y}, \mathrm{X})| \leq|\operatorname{LCSSeq} \operatorname{Str}(\mathrm{Y}, \mathrm{X})| \leq$
$|\operatorname{LCSSeq}(\mathrm{X}, \mathrm{Y})|=|\operatorname{LCSSeq}(\mathrm{Y}, \mathrm{X})|$.
$-|\operatorname{LCSStr}(\mathrm{X}, \mathrm{Y})|=|\operatorname{LCSStr}(\mathrm{Y}, \mathrm{X})| \leq \min \{|\operatorname{LCSSeqStr}(\mathrm{X}, \mathrm{Y})|,|\operatorname{LCSSeqStr}(\mathrm{Y}, \mathrm{X})|\}$
$\leq \max \{|\operatorname{LCSSeqStr}(\mathrm{X}, \mathrm{Y})|,|\operatorname{LCSSeqStr}(\mathrm{Y}, \mathrm{X})|\}$
$\leq|\operatorname{LCSSeq}(\mathrm{X}, \mathrm{Y})|=|\operatorname{LCSSeq}(\mathrm{Y}, \mathrm{X})|$.

The Problems

The Constrained Longest Common Subsequence Problem for Two Strings

-Tsai [2] extended the longest common subsequence problem for two strings to the constrained longest common subsequence problem for two strings and a constrained string P.
-[2] Y. T. Tsai, The constrained longest common subsequence problem, Information Processing Letters 88 (2003) 173-176.

The Constrained Longest Common Subsequence Problem for Two Strings

-For two strings X, Y, and a constrained string P , the constrained longest common subsequence problem for two strings X and Y with respect to P is to find a longest string Z : $=\operatorname{CLCSSeq}(\mathrm{X}, \mathrm{Y} ; \mathrm{P})$ such that Z is a subsequence of both X and Y and P is a subsequence of Z.
-Clearly, if P is an empty string, then $\operatorname{CLCSSeq}(\mathrm{X}, \mathrm{Y} ; \mathrm{P})=\operatorname{LCSSeq}(\mathrm{X}, \mathrm{Y})$.

The Constrained Longest Common Subsequence Problem for Two Strings

-"Such a problem could arise in computing the homology of two biological sequences which have a specific or putative structure in common" quoted from [2].
-Tsai [2] designed an $\mathrm{O}\left(\left.\left|\mathrm{X}^{2}\right| \mathrm{Y}\right|^{2}|\mathrm{P}|\right)$ time algorithm for CLCSSeq(X, Y; P).

The Constrained Longest Common Subsequence and Substring Problem for Two Strings
-Motivated by Tasi's work, we introduced the constrained longest common
subsequence and substring problem for two strings and a constrained string.
-For two strings X, Y, and a constrained string P , the constrained longest common subsequence and substring problem for two strings X and Y with respect to P , is to find a longest string Z : $=\operatorname{CLCSSeqStr}(\mathrm{X}, \mathrm{Y} ; \mathrm{P})$ such that Z is a subsequence of X , a substring of Y , and P is a subsequence of Z .
-Clearly, if P is an empty string, then $\operatorname{CLCSSeqStr}(\mathrm{X}, \mathrm{Y} ; \mathrm{P})=\operatorname{LCSSeq} \operatorname{Str}(\mathrm{X}, \mathrm{Y})$ in [1].

The Constrained Longest Common Subsequence and Substring Problem for Two Strings
-Suppose $\mathbf{X}=$ "GAAAACCCT", $\mathbf{Y}=$ "GACACACT", $\mathbf{P}=$ "AC".
-"ACT" is a constrained longest common subsequence and substring for \mathbf{X} and \mathbf{Y}.

Thus $|\operatorname{CLCSSeqStr}(\mathbf{X}, \mathbf{Y} ; \mathbf{P})|=3$.
-"GAAACT" is a constrained longest common subsequence for $\mathbf{Y}($ resp. $\mathbf{X})$ and \mathbf{X} $($ resp. $\mathbf{Y})$. Thus $|\operatorname{CLCSSeq}(\mathbf{X}, \mathbf{Y} ; \mathbf{P})|=|\operatorname{LCSSeq}(\mathbf{Y}, \mathbf{X} ; \mathbf{P})|=6$.
-In general, $|\operatorname{CLCSSeqStr}(\mathbf{X}, \mathbf{Y} ; \mathbf{P})| \leq|\operatorname{CLCSSeq}(\mathbf{X}, \mathbf{Y} ; \mathbf{P})|$.

The Problems

The Constrained Longest Common Subsequence and Substring Problem for Two Strings
-Using dynamic programing (DP), we designed an algorithm for finding
CLCSSeqStr(X, Y; P). Both time complexity and space complexity of our algorithm are $\mathrm{O}(|\mathrm{X}||\mathrm{Y}||\mathrm{P}|)$.

The Algorithm

-Let $S=s_{1} s_{2} \ldots s_{r}$ be a string over an alphabet \sum, The r prefixes of
S are defined as $S_{1}=\mathrm{s}_{1}, \mathrm{~S}_{2}=\mathrm{s}_{1} \mathrm{~s}_{2}, \mathrm{~S}_{3}=\mathrm{s}_{1} \mathrm{~s}_{2} \mathrm{~s}_{3}, \ldots$, and $\mathrm{S}_{\mathrm{r}}=\mathrm{s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{r}}$.
S_{0} is defined as an empty string.
-The r suffixes of S are defined as $\mathrm{T}_{1}=\mathrm{s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{r}}, \mathrm{T}_{2}=\mathrm{s}_{2} \mathrm{~s}_{3} \ldots \mathrm{~s}_{\mathrm{r}}, \ldots, \mathrm{T}_{\mathrm{r}-1}=\mathrm{s}_{\mathrm{r}-1} \mathrm{~s}_{\mathrm{r}}$,
and $T_{r}=\mathrm{s}_{\mathrm{r}}$,

The Algorithm

-Let $\mathrm{X}=\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{m}}, \mathrm{Y}=\mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{n}}$, and $\mathrm{P}=\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{r}}$. Define $\mathrm{Z}[\mathrm{i}, \mathrm{j}, \mathrm{k}]$ as a string
satisfying the following conditions.
(1) it is a subsequence of $X_{i}=x_{1} x_{2} \ldots x_{i}$,
(2) it is a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$,
(3) it has $\mathrm{P}_{\mathrm{k}}=\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{k}}$ as a subsequence,
(4) under (1), (2) and (3), its length is as large as possible, where $1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$, and $1 \leq \mathrm{k} \leq \mathrm{r}$.

The Algorithm

-We will use a 3-dimensional array $\mathrm{M}[\mathrm{m}+1][\mathrm{n}+1][\mathrm{r}+1]$ to store $|\mathrm{Z}[\mathrm{i}, \mathrm{j}, \mathrm{k}]|$.

Namely, $M[i][j][k]=|Z[i, j, k]|$, where $0 \leq \mathrm{i} \leq \mathrm{m}, 0 \leq \mathrm{j} \leq \mathrm{n}, 0 \leq \mathrm{k} \leq \mathrm{r}$.
-We will recursively fill in the cells in M .
-Firstly, we fill in the boundary cells in array M.

The Algorithm

-Filling in the boundary cells.

[1] If $i=0$ and $k=0$ the length of a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence is zero. Thus $\mathrm{M}[0][\mathrm{j}][0]=0$, where $0 \leq \mathrm{j} \leq \mathrm{n}$.

The Algorithm

-Filling in the boundary cells.

[2] If $\mathrm{j}=0$ and $\mathrm{k}=0$, the length of a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence is zero. Thus $\mathrm{M}[\mathrm{i}][0][0]=0$, where $0 \leq \mathrm{i} \leq \mathrm{m}$.

The Algorithm

-Filling in the boundary cells.

[3] If $\mathrm{i}=0$ and $\mathrm{k} \geq 1$, there is not a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence. Thus $\mathrm{M}[0][\mathrm{j}][\mathrm{k}]=-\infty$, where $0 \leq \mathrm{j} \leq \mathrm{n}$ and $1 \leq \mathrm{k} \leq \mathrm{r}$.

The Algorithm

-Filling in the boundary cells.

[4] If $j=0$ and $k \geq 1$, there is not a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence. Thus $\mathrm{M}[\mathrm{i}][0][\mathrm{k}]=-\infty$, where $0 \leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq \mathrm{k} \leq \mathrm{r}$.

The Algorithm

-Filling in the boundary cells.

[5] If $\mathrm{k}=0$ or P_{k} is an empty string. Then CLCSSeqStr$\left(\mathrm{X}, \mathrm{Y} ; \mathrm{P}_{\mathrm{k}}\right)=\operatorname{LCSSeqStr}(\mathrm{X}, \mathrm{Y})$ in [1]. The cells of $\mathrm{M}[\mathrm{i}][\mathrm{j}][0]$, where $1 \leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq \mathrm{j} \leq \mathrm{n}$, can be filled in by the following rules.
If $x_{i}=y_{j}$, then $M[i][j][0]=M[i-1][j-1][0]+1$. If $x_{i} \neq y_{j}$, then $M[i][j][0]=M[i-1][j][0]$.

The Algorithm

-Filling in other cells.

-Claim 1. Suppose that $X_{i}=x_{1} x_{2} \ldots x_{i}, Y_{j}=y_{1} y_{2} \ldots y_{j}$, and $P_{k}=p_{1} p_{2} \ldots p_{k}$, where $1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}, 1 \leq \mathrm{k} \leq \mathrm{r}$. If $\mathrm{Z}[\mathrm{i}, \mathrm{j}, \mathrm{k}]=\mathrm{z}_{1} \mathrm{z}_{2} \ldots \mathrm{Z}_{\mathrm{a}}$ is a string satisfying conditions
(1) it is a subsequence of $X_{i}=x_{1} x_{2} \ldots x_{i}$,
(2) it is a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$,
(3) it has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence,
(4) under (1), (2) and (3), its length is as large as possible, where $1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$, and $1 \leq \mathrm{k} \leq \mathrm{r}$.

Then we have only the following possible cases and the statement in each case is true.

The Algorithm

-Filling in other cells.

-Claim 1.
Case 1. $\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}}=\mathrm{p}_{\mathrm{k}}$. We have $|\mathrm{Z}[\mathrm{i}, \mathrm{j}, \mathrm{k}]|=|\mathrm{Z}[\mathrm{i}-1, \mathrm{j}-1, \mathrm{k}-1]|+1$ in this case.

Case 2. $x_{i}=y_{j} \neq p_{k}$. We have $|Z[i, j, k]|=|Z[i-1, j-1, k]|+1$ in this case.

Case 3. $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j}=p_{k}$. We have $|Z[i, j, k]|=|Z[i-1, j, k]|$ in this case.

Case 4. $\mathrm{x}_{\mathrm{i}} \neq \mathrm{y}_{\mathrm{j}}, \mathrm{x}_{\mathrm{i}} \neq \mathrm{p}_{\mathrm{k}}$, and $\mathrm{y}_{\mathrm{j}} \neq \mathrm{p}_{\mathrm{k}}$. We have $|\mathrm{Z}[\mathrm{i}, \mathrm{j}, \mathrm{k}]|=|\mathrm{Z}[\mathrm{i}-1, \mathrm{j}, \mathrm{k}]|$ in this case.

Case 5. $x_{i} \neq y_{j}, x_{i}=p_{k}$, and $y_{j} \neq p_{k}$. This case cannot happen.

The Algorithm

-Filling in other cells.
-Claim 2. Suppose there is not a string which is a subsequence of $X_{i}=x_{1} x_{2} \ldots x_{i}$,
a suffice of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$, as a subsequence, where
$1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}, 1 \leq \mathrm{k} \leq \mathrm{r}$. Namely, $\mathrm{Z}[\mathrm{i}, \mathrm{j}, \mathrm{k}]$ doesn't exist. Then
[1]. If $x_{i}=y_{j}=p_{k}$, then there is not a string which is a subsequence of X_{i-1}
$=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j-1}=y_{1} y_{2} \ldots y_{j-1}$, and has $P_{k-1}=p_{1} p_{2} \ldots p_{k-1}$
as a subsequence. Namely, if $\mathbf{Z}[\mathbf{i}, \mathbf{j}, \mathbf{k}]$ does not exist, then $\mathbf{Z}[\mathbf{i} \mathbf{- 1 , j - 1 , k - 1]}$
does not exist either.

The Algorithm

-Filling in other cells.
-Claim 2.
[2]. If $x_{i}=y_{j} \neq p_{k}$, then there is not a string which is a subsequence of
$X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j-1}=y_{1} y_{2} \ldots y_{j-1}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$
as a subsequence. Namely, if $\mathbf{Z}[\mathbf{i}, \mathbf{j}, \mathbf{k}]$ does not exist, then $\mathbf{Z}[\mathbf{i} \mathbf{- 1 , j} \mathbf{j} \mathbf{1 , k}]$
does not exist either.

The Algorithm

-Filling in other cells.
-Claim 2.
[3]. If $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j}=p_{k}$, then there is not a string which is a
subsequence of $X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has
$P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence. Namely, if $\mathbf{Z}[\mathbf{i}, \mathbf{j}, \mathbf{k}]$ does not exist, then
$\mathbf{Z}[\mathbf{i}-\mathbf{1}, \mathbf{j}, \mathrm{k}]$ does not exist either.

The Algorithm

-Filling in other cells.

-Claim 2.
[4]. If $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j} \neq p_{k}$, then there is not a string which is a
subsequence for $X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has
$P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence. Namely, if $\mathbf{Z}[\mathbf{i}, \mathbf{j}, \mathbf{k}]$ does not exist,
then $Z[i-1, j, k]$ does not exist either.

The Algorithm

-Claim 3. Let U_{k} be a longest string which is a subsequence of X, a substring of Y, and has P_{k} as a subsequence. Then $\left|\mathrm{U}_{\mathrm{k}}\right|=\max \{|\mathrm{Z}[\mathrm{i}, \mathrm{j}, \mathrm{k}]|: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}, 1 \leq \mathrm{k} \leq \mathrm{r}\}$. Thus $\left|\mathrm{U}_{\mathrm{r}}\right|=\max \{|\mathrm{Z}[\mathrm{i}, \mathrm{j}, \mathrm{r}]|: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\}=|\operatorname{CLCSSubStr}(\mathrm{X}, \mathrm{Y} ; \mathrm{P})|$.

The Algorithm

$-|C L C S S e q S t r(X, Y ; P)|=\max \{\mathrm{M}[\mathrm{i}][\mathrm{j}][\mathrm{r}]: 0 \leq \mathrm{i} \leq \mathrm{m}, 0 \leq \mathrm{j} \leq \mathrm{n}\}$.
-We can also find the CLCSSeqStr(X, Y; P) when we write a program.
-The time complexity of our algorithm is

$$
\mathrm{O}(|\mathrm{X}|+1)(|\mathrm{Y}|+1)(|\mathrm{P}|+1)) \sim \mathrm{O}(|\mathrm{X}||\mathrm{Y}||\mathrm{P}|) .
$$

-The space complexity of our algorithm also is

$$
\mathrm{O}(|\mathrm{X}|+1)(|\mathrm{Y}|+1)(|\mathrm{P}|+1)) \sim \mathrm{O}(|\mathrm{X}||\mathrm{Y}||\mathrm{P}|) .
$$

Thanks

