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Subsequences and Substrings

-Let > be an alphabet and S a string over Y. A subsequence of a string S IS
obtained by deleting zero or more letters from S.

If S=“ACGTU”, then “ATU” is a subsequence of S.

-A substring of a string S Is a subsequence of S consists of consecutive letters in S.

If S =“ACGTU”, then “CGT” is a substring of S, “ATU” is not a substring of S,

-Every substring of S is also a subsequence of S.

-The empty string is a subsequence and a substring of any string.



The Longest Common Subsequence Problem for Two Strings

-The longest common subsequence problem for two strings X and Y is to

find a longest string, denoted LCSSeq(X, Y), which is a subsequence

of both X and Y.

-Obviously, the set of LCSSeq(X, Y) and the set LCSSeq(Y, X) are the same.

ILCSSeq(X, Y)| = |LCSSeq(Y, X)|.



The Longest Common Substring Problem for Two Strings

-The longest common substring problem for two strings X and Y is to

find a longest string, denoted LCSStr(X, Y), which is a substring

of both X and Y.

-Obviously, the set of LCSStr(X, Y) and the set LCSStr(Y, X) are the same.

ILCSStr(X, Y)| = |LCSStr(Y, X)|.



The Longest Common Subsequence and Substring Problem for Two Strings

-In [1], Li, Deka, and Deka introduced the longest common subsequence and

substring problem for two strings X and Y which is to find a longest string,

denoted LCSSeqStr(X, Y), that is a subsequence of X and a substring Y.

-[1] R. Li, J. Deka, and K. Deka, An algorithm for the longest common

subsequence and substring problem, Journal of Math and Informatics

25 (2023) 77-81.



The Longest Common Subsequence and Substring Problem for Two Strings

-In general, the set of LCSSeqStr(X, Y) and the set LCSSeqStr(Y, X)

are not the same. |LCSSeqStr(X, Y)| # |LCSSeqStr(Y, X)|.

-In [1], Li, Deka, and Deka designed an algorithm for LCSSeqStr(X, Y). The time

and space complexities of the algorithm are O(|X| [Y]), where |X| and |Y| are the

lengths of strings X and Y, respectively.



Examples

- Suppose X = “GAAAACCCT” and Y = “GACACACT”.

-“AC” is a longest common substring for X (resp. Y) and Y (resp. X). Thus
ILCSStr(X, Y)| = [LCSStr(Y, X)| = 2.

-“ACT” is a longest common subsequence and substring for X and Y. Thus
|ILCSSeqStr(X, Y)| = 3.

-“ACCCT” is a longest common subsequence and substring for Y and X. Thus
|ILCSSeqStr(Y, X)| = 5.

-“GAAACT” is a longest common subsequence for X (resp. Y) and Y (resp. X).
Thus LCSSeq(X, Y)| = |LCSSeq(Y, X)| = 6.



The Three Problems

[ILCSStr(X, Y)| = [LCSStr(Y, X)| < |LCSSeqStr(X, Y)| <

ILCSSeq(X, Y)| = |LCSSeq(Y, X)|.

[ILCSStr(X, Y)| = [LCSStr(Y, X)| < |LCSSeqStr(Y, X)| <

ILCSSeq(X, Y)| = |LCSSeq(Y, X)|.

-ILCSStr(X, Y)| = [LCSStr(Y, X)| < min{|LCSSeqStr(X, Y)|, |[LCSSeqStr(Y, X)|}

< max {|LCSSeqStr(X, Y)|, [LCSSeqStr(Y, X)|}

<|LCSSeq(X, Y)| = |LCSSeq(Y, X)|.



The Problems

LCSSeq(X, Y) LCSStr(X, Y)
p=«“” LCSSeqStr(X, Y), [1] Li et al.
P — ¢ 9
CLCS(X, Y: P) CLCSSeqStr(X, Y; P)

[2] Tasi



The Constrained Longest Common Subsequence Problem for Two Strings

-Tsai [2] extended the longest common subsequence problem for two strings to
the constrained longest common subsequence problem for two strings and a

constrained string P.

-[2] Y. T. Tsai, The constrained longest common subsequence problem,

Information Processing Letters 88 (2003) 173-176.
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The Constrained Longest Common Subsequence Problem for Two Strings

-For two strings X, Y, and a constrained string P, the constrained longest common
subsequence problem for two strings X and Y with respect to P is to find a longest
string Z: = CLCSSeq(X, Y; P) such that Z is a subsequence of both X and Y and

P is a subsequence of Z.

-Clearly, if P is an empty string, then CLCSSeq(X, Y; P) = LCSSeq(X, Y).
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The Constrained Longest Common Subsequence Problem for Two Strings

-““Such a problem could arise in computing the homology of two biological

sequences which have a specific or putative structure in common’ quoted

from [2].

-Tsai [2] designed an O(|X? |Y|? |P|) time algorithm for CLCSSeq(X, Y; P).
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The Constrained Longest Common Subsequence and Substring Problem for Two Strings

-Motivated by Tasi’s work, we introduced the constrained longest common

subsequence and substring problem for two strings and a constrained string.
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The Constrained Longest Common Subsequence and Substring Problem for Two Strings

-For two strings X, Y, and a constrained string P, the constrained longest common

subsequence and substring problem for two strings X and Y with respect to P,

Is to find a longest string Z: = CLCSSeqStr(X, Y; P) such that Z is a

subsequence of X, a substring of Y, and P is a subsequence of Z.

-Clearly, if P is an empty string, then CLCSSeqStr(X, Y; P) = LCSSeqStr(X, Y)

in [1].
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The Constrained Longest Common Subsequence and Substring Problem for Two Strings

-Suppose X = “GAAAACCCT”, Y = “GACACACT”, P =“AC”.

-“ACT” is a constrained longest common subsequence and substring for X and Y.

Thus |CLCSSeqgStr(X, Y; P)| = 3.

-“GAAACT” is a constrained longest common subsequence for Y (resp. X) and X

(resp. Y). Thus |[CLCSSeq(X, Y; P)| = |LCSSeq(Y, X; P)| =6.

-In general, |CLCSSeqStr(X, Y; P)| <|CLCSSeq(X, Y; P)|.
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The Problems

LCSSeq(X, Y) LCSStr(X, Y)
p=«“” LCSSeqStr(X, Y), [1] Li et al.
P — ¢ 9
CLCS(X, Y: P) CLCSSeqStr(X, Y; P)

[2] Tasi
16



The Constrained Longest Common Subsequence and Substring Problem for Two Strings

-Using dynamic programing (DP), we designed an algorithm for finding
CLCSSeqStr(X, Y; P). Both time complexity and space complexity of our

algorithm are O(|X| |Y] |P]).
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The Algorithm

-Let S =5, s, ... S, be a string over an alphabet ), The r prefixes of
Saredefinedas S; =s; S,=5S,, S3=5,5,S3, ..., and S, =5, S, ... S..

S, Is defined as an empty string.

-The r suffixes of S are definedas T, =s;S,...5, T, =5,S;5 ... S, ..., T, =S4,

and T, =s,
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The Algorithm

Let X=X X ... X, Y =V, Y, .. Y, and P = p, p, ... p,. Define Z[i, j, K] as a string
satisfying the following conditions.

(1) itis a subsequence of X;=X; X, ... X;

(2) itisasuffixof Y=y, y,...y;

(3)ithas P, =p, p, ... p,as a subsequence,

(4) under (1), (2) and (3), its length is as large as possible,

where ] <i<m,1<j<n,and 1 < k<r.
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The Algorithm

-We will use a 3-dimensional array M[m + 1][n + 1][r + 1] to store |Z[i, j, K]|.

Namely, M[i][j][k] = |Z[1, j, k]|, where 0 < i< m,0< j< n,0<k<r.

-We will recursively fill in the cells in M.

-Firstly, we fill in the boundary cells in array M.
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The Algorithm
-Filling in the boundary cells.
[1] Ifi=0and k = 0 the length of a string which is a subsequence of X;, a suffix of Y;, and
has P, as a subsequence is zero. Thus M[0][j][0] = 0, where 0 <j <n.
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The Algorithm
-Filling in the boundary cells.
[2] Ifj=0and k=0, the length of a string which is a subsequence of X;, a suffix of Y;, and
has P, as a subsequence is zero. Thus M[i][0][0] = 0, where 0 <i<m.
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The Algorithm
-Filling in the boundary cells.
[3] Ifi=0 and k > 1, there is not a string which is a subsequence of X;, a suffix of
Y;, and has P, as a subsequence. Thus M[O][j][K] = -oo, where 0 <j<nand 1 <k <r.
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The Algorithm

-Filling in the boundary cells.
[4] If j = 0 and k > 1, there is not a string which is a subsequence of X;, a suffix of Y;, and has
P, as a subsequence. Thus M[i][0][K] = -o0, where 0 <i<mand 1 <k <r.
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The Algorithm

-Filling in the boundary cells.

[5] If k =0 or P, is an empty string. Then CLCSSeqStr(X, Y; P,) = LCSSeqStr(X, Y) in [1]. The cells of
M[1][;][0], where 1 <1<m and 1 <j <n, can be filled in by the following rules.
I x; = y;, then M[i][i][0] = M[i - 1][j - 1][0] + 1. If x; # y;, then M[i][j][0] = M[i - 1][j][C].
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The Algorithm
-Filling in other cells.

-Claim 1. Suppose that X;=X; X, ... X;, Y;=VY; Y, ... ¥; and P, =p; p, ... Py,
where 1 < i< m,1<j<n 1 <k<r.IfZ[i,j,k]=2,2,..2,isa

string satisfying conditions

(1) itis a subsequence of X;=X; X, ... X;

(2) itisasuffixof Y=y, y,...y;

(3)ithas P, =p, p, ... p,as a subsequence,

(4) under (1), (2) and (3), its length is as large as possible,

where 1 <i<m,1<j<n,and 1< k<r.

Then we have only the following possible cases and the statement in each case is

true.
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The Algorithm
-Filling in other cells.

-Claim 1.
Case 1. x;=y; = py- We have |Z[i, J, k]| = [Z[i - 1, ] - 1, k - 1]| + 1 in this case.

Case 2. X; = Y; # px- We have |Z]i, J, K]| = |Z[1 - 1, ] - 1, k]| + 1 In this case.

Case 3. X; # yj, X # P and y; = p,. We have |Z]1, J, K]| = |Z[i - 1, J, k]| In this case.

Case 4. X; # yj, X # P and y; # p. We have |Z]i, J, K]| = |Z[i - 1, J, k]| In this case.

Case 5. X; # yj, X; = Py, and y;# py. This case cannot happen.
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The Algorithm

-Filling in other cells.

-Claim 2. Suppose there is not a string which is a subsequence of X; = X; X, ... X;,
a sufficeof Y;=vy, y, ... y; and has P, = p; p, ... py, as a subsequence, where

1<i1i<m,1<j<n,1<k<r Namely, Z[1, j, k] doesn’t exist. Then

[1]. If X; = y; = Py then there is not a string which is a subsequence of X; _,
=Xy Xy . Xj_ g, asuffixof Y; =y, y,...y; j,andhas Py =p;py .. Py4
as a subsequence. Namely, if Z[i, j, K] does not exist, then Z[i-1,j -1, k- 1]

does not exist either.
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The Algorithm

-Filling in other cells.

-Claim 2.

[2]. If X; = y; # py, then there is not a string which is a subsequence of
Xi 1 =X Xy X, asuffixof Y =y, y, ... y;.q, and has P, = p; p, ... py
as a subsequence. Namely, if Z[i, j, K] does not exist, then Z[i- 1, j - 1, K]

does not exist either.
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The Algorithm

-Filling in other cells.

-Claim 2.

[3]. If X; # Yj» Xi # Pio and Yi = Pis then there is not a string which is a
subsequence of X;_; = X; X, ... X;_ 1, a suffix of Y; =y, y, ... y;, and has
P.= P, P, ... Py @s a subsequence. Namely, if Z[i, J, k] does not exist, then

Z[i -1, j, k] does not exist either.
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The Algorithm

-Filling in other cells.

-Claim 2.

[4]. 1T X; # ¥, X; # P, @nd Y; # py, then there is not a string which is a
subsequence for X;_; =X; X, ... X;_1, a suffixof Y;=y,y, ... y;, and has
P.=P;P5 .- Py @S a subsequence. Namely, if Z]i, j, k] does not exist,

then Z[i - 1, j, k] does not exist either.
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The Algorithm

-Claim 3. Let U, be a longest string which is a subsequence of X, a substring of Y,
and has P, as a subsequence. Then |U,| = max{|Z[i, j, k]| : 1< i< m,1<j<n, 1 <k<r}.
Thus |U/| =max{|Z[i, ], r]|: 1 < i< m, 1 £ j< n} =|CLCSSubStr(X, Y; P)|.
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The Algorithm

[|CLCSSeqStr(X, Y; P)| = max {M[i][j][r]: 0 <i<m, 0 <j<n.

-We can also find the CLCSSeqStr(X, Y; P) when we write a program.

-The time complexity of our algorithm is

O((IX]+ D)(Y]+ 1)(IP| + 1)) ~ O(X] [Y] [P]).

-The space complexity of our algorithm also is

O((IX]+ D)(Y]+ 1)(P| + 1)) ~ O(X] [Y] [P]).
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Thanks
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