The 5th National Big Data Health Science Conference University of South Carolina Columbia, SC

Feb. 2 - 3, 2024

An Algorithm for the Constrained Longest Common Subsequence and Substring Problem

Rao Li University of South Carolina Aiken

Joint work with Jyotishmoy Deka, Kaushik Deka, and Dorothy Li

Subsequences and Substrings

-Let \sum be an alphabet and **S** a string over \sum . A subsequence of a string **S** is obtained by deleting zero or more letters from **S**.

If S ="ACGTU", then "ATU" is a subsequence of S.

-A substring of a string S is a subsequence of S consists of consecutive letters in S.

If S ="ACGTU", then "CGT" is a substring of S, "ATU" is not a substring of S,

-Every substring of **S** is also a subsequence of **S**.

-The empty string is a subsequence and a substring of any string.

The Longest Common Subsequence Problem for Two Strings

-The longest common subsequence problem for two strings X and Y is to

find a longest string, denoted LCSSeq(X, Y), which is a subsequence

of both X and Y.

-Obviously, the set of LCSSeq(X, Y) and the set LCSSeq(Y, X) are the same.

|LCSSeq(X, Y)| = |LCSSeq(Y, X)|.

The Longest Common Substring Problem for Two Strings

-The longest common substring problem for two strings X and Y is to

find a longest string, denoted LCSStr(X, Y), which is a substring

of both X and Y.

-Obviously, the set of LCSStr(X, Y) and the set LCSStr(Y, X) are the same.

|LCSStr(X, Y)| = |LCSStr(Y, X)|.

-In [1], Li, Deka, and Deka introduced the longest common subsequence and

substring problem for two strings X and Y which is to find a longest string,

denoted LCSSeqStr(X, Y), that is a subsequence of X and a substring Y.

-[1] R. Li, J. Deka, and K. Deka, An algorithm for the longest common

subsequence and substring problem, Journal of Math and Informatics

25 (2023) 77-81.

-In general, the set of LCSSeqStr(X, Y) and the set LCSSeqStr(Y, X)

are not the same. $|LCSSeqStr(X, Y)| \neq |LCSSeqStr(Y, X)|$.

-In [1], Li, Deka, and Deka designed an algorithm for LCSSeqStr(X, Y). The time

and space complexities of the algorithm are O(|X| |Y|), where |X| and |Y| are the

lengths of strings X and Y, respectively.

Examples

- Suppose $\mathbf{X} =$ "GAAAAACCCT" and $\mathbf{Y} =$ "GACACACT".
- -"AC" is a longest common substring for X (resp. Y) and Y (resp. X). Thus |LCSStr(X, Y)| = |LCSStr(Y, X)| = 2.
- -"ACT" is a longest common subsequence and substring for **X** and **Y**. Thus $|LCSSeqStr(\mathbf{X}, \mathbf{Y})| = 3.$

-"ACCCT" is a longest common subsequence and substring for **Y** and **X**. Thus $|LCSSeqStr(\mathbf{Y}, \mathbf{X})| = 5$.

-"GAAACT" is a longest common subsequence for **X** (resp. **Y**) and **Y** (resp. **X**). Thus LCSSeq(**X**, **Y**)| = |LCSSeq(**Y**, **X**)| = 6.

The Three Problems

 $-|LCSStr(X, Y)| = |LCSStr(Y, X)| \le |LCSSeqStr(X, Y)| \le$

|LCSSeq(X, Y)| = |LCSSeq(Y, X)|.

 $-|LCSStr(X, Y)| = |LCSStr(Y, X)| \le |LCSSeqStr(Y, X)| \le$

|LCSSeq(X, Y)| = |LCSSeq(Y, X)|.

 $-|LCSStr(X, Y)| = |LCSStr(Y, X)| \le \min\{|LCSSeqStr(X, Y)|, |LCSSeqStr(Y, X)|\}$

 $\leq \max\{|LCSSeqStr(X, Y)|, |LCSSeqStr(Y, X)|\}$

 $\leq |LCSSeq(X, Y)| = |LCSSeq(Y, X)|.$

The Problems

-Tsai [2] extended the longest common subsequence problem for two strings to the constrained longest common subsequence problem for two strings and a constrained string P.

-[2] Y. T. Tsai, The constrained longest common subsequence problem,

Information Processing Letters 88 (2003) 173-176.

-For two strings X, Y, and a constrained string P, the constrained longest common subsequence problem for two strings X and Y with respect to P is to find a longest string Z: = CLCSSeq(X, Y; P) such that Z is a subsequence of both X and Y and P is a subsequence of Z.

-Clearly, if P is an empty string, then CLCSSeq(X, Y; P) = LCSSeq(X, Y).

-"Such a problem could arise in computing the homology of two biological sequences which have a specific or putative structure in common" quoted from [2].

-Tsai [2] designed an $O(|X^2|Y|^2|P|)$ time algorithm for CLCSSeq(X, Y; P).

-Motivated by Tasi's work, we introduced the constrained longest common

subsequence and substring problem for two strings and a constrained string.

-For two strings X, Y, and a constrained string P, the constrained longest common

subsequence and substring problem for two strings X and Y with respect to P,

is to find a longest string Z: = CLCSSeqStr(X, Y; P) such that Z is a

subsequence of X, a substring of Y, and P is a subsequence of Z.

-Clearly, if P is an empty string, then CLCSSeqStr(X, Y; P) = LCSSeqStr(X, Y) in [1].

-Suppose $\mathbf{X} =$ "GAAAAACCCT", $\mathbf{Y} =$ "GACACACT", $\mathbf{P} =$ "AC".

-"ACT" is a constrained longest common subsequence and substring for X and Y.

Thus $|CLCSSeqStr(\mathbf{X}, \mathbf{Y}; \mathbf{P})| = 3.$

-"GAAACT" is a constrained longest common subsequence for Y (resp. X) and X

(resp. Y). Thus |CLCSSeq(X, Y; P)| = |LCSSeq(Y, X; P)| = 6.

-In general, $|CLCSSeqStr(\mathbf{X}, \mathbf{Y}; \mathbf{P})| \leq |CLCSSeq(\mathbf{X}, \mathbf{Y}; \mathbf{P})|$.

The Problems

-Using dynamic programing (DP), we designed an algorithm for finding CLCSSeqStr(X, Y; P). Both time complexity and space complexity of our algorithm are O(|X| |Y| |P|).

-Let $S = s_1 s_2 \dots s_r$ be a string over an alphabet Σ , The r prefixes of

S are defined as $S_1 = s_1$, $S_2 = s_1s_2$, $S_3 = s_1s_2s_3$, ..., and $S_r = s_1s_2...s_r$.

 S_0 is defined as an empty string.

-The r suffixes of S are defined as $T_1 = s_1 s_2 \dots s_r$, $T_2 = s_2 s_3 \dots s_r$, \dots , $T_{r-1} = s_{r-1} s_r$,

and $T_r = s_r$,

-Let $X = x_1 x_2 \dots x_m$, $Y = y_1 y_2 \dots y_n$, and $P = p_1 p_2 \dots p_r$. Define Z[i, j, k] as a string

satisfying the following conditions.

(1) it is a subsequence of $X_i = x_1 x_2 \dots x_{i}$,

(2) it is a suffix of $Y_j = y_1 y_2 \dots y_{j}$

(3) it has $P_k = p_1 p_2 \dots p_k$ as a subsequence,

(4) under (1), (2) and (3), its length is as large as possible,

where $1 \le i \le m$, $1 \le j \le n$, and $1 \le k \le r$.

-We will use a 3-dimensional array M[m + 1][n + 1][r + 1] to store |Z[i, j, k]|.

Namely, M[i][j][k] = |Z[i, j, k]|, where $0 \le i \le m$, $0 \le j \le n$, $0 \le k \le r$.

-We will recursively fill in the cells in M.

-Firstly, we fill in the boundary cells in array M.

-Filling in the boundary cells.

[1] If i = 0 and k = 0 the length of a string which is a subsequence of X_i , a suffix of Y_j , and has P_k as a subsequence is zero. Thus M[0][j][0] = 0, where $0 \le j \le n$.

-Filling in the boundary cells.

[2] If j = 0 and k = 0, the length of a string which is a subsequence of X_i , a suffix of Y_j , and has P_k as a subsequence is zero. Thus M[i][0][0] = 0, where $0 \le i \le m$.

22

-Filling in the boundary cells.

[3] If i = 0 and k \ge 1, there is not a string which is a subsequence of X_i, a suffix of Y_i, and has P_k as a subsequence. Thus M[0][j][k] = - ∞ , where $0 \le j \le n$ and $1 \le k \le r$.

23

-Filling in the boundary cells.

[4] If j = 0 and $k \ge 1$, there is not a string which is a subsequence of X_i , a suffix of Y_j , and has P_k as a subsequence. Thus $M[i][0][k] = -\infty$, where $0 \le i \le m$ and $1 \le k \le r$.

-Filling in the boundary cells.

[5] If k = 0 or P_k is an empty string. Then CLCSSeqStr(X, Y; P_k) = LCSSeqStr(X, Y) in [1]. The cells of M[i][j][0], where $1 \le i \le m$ and $1 \le j \le n$, can be filled in by the following rules.

If $x_i = y_j$, then M[i][j][0] = M[i - 1][j - 1][0] + 1. If $x_i \neq y_j$, then M[i][j][0] = M[i - 1][j][0].

-Filling in other cells.

-<u>Claim 1.</u> Suppose that $X_i = x_1 x_2 \dots x_i$, $Y_j = y_1 y_2 \dots y_j$, and $P_k = p_1 p_2 \dots p_k$, where $1 \le i \le m$, $1 \le j \le n$, $1 \le k \le r$. If $Z[i, j, k] = z_1 z_2 \dots z_a$ is a string satisfying conditions

(1) it is a subsequence of $X_i = x_1 x_2 \dots x_{i,j}$

(2) it is a suffix of $Y_j = y_1 y_2 \dots y_{j_j}$

(3) it has $P_k = p_1 p_2 \dots p_k$ as a subsequence,

(4) under (1), (2) and (3), its length is as large as possible,

where $1 \le i \le m$, $1 \le j \le n$, and $1 \le k \le r$.

Then we have only the following possible cases and the statement in each case is true.

-Filling in other cells.

-<u>Claim 1.</u>

Case 1. $x_i = y_j = p_k$. We have |Z[i, j, k]| = |Z[i - 1, j - 1, k - 1]| + 1 in this case.

Case 2. $x_i = y_j \neq p_k$. We have |Z[i, j, k]| = |Z[i - 1, j - 1, k]| + 1 in this case.

Case 3. $x_i \neq y_j$, $x_i \neq p_k$, and $y_j = p_k$. We have |Z[i, j, k]| = |Z[i - 1, j, k]| in this case.

Case 4. $x_i \neq y_j$, $x_i \neq p_k$, and $y_j \neq p_k$. We have |Z[i, j, k]| = |Z[i - 1, j, k]| in this case.

Case 5. $x_i \neq y_j$, $x_i = p_k$, and $y_j \neq p_k$. This case cannot happen.

-Filling in other cells.

-<u>Claim 2.</u> Suppose there is not a string which is a subsequence of $X_i = x_1 x_2 \dots x_i$,

a suffice of $Y_i = y_1 y_2 \dots y_k$ and has $P_k = p_1 p_2 \dots p_k$, as a subsequence, where

 $1 \le i \le m, 1 \le j \le n, 1 \le k \le r$. Namely, Z[i, j, k] doesn't exist. Then

[1]. If $x_i = y_j = p_k$, then there is not a string which is a subsequence of X_{i-1}

 $= x_1 x_2 \dots x_{i-1}$, a suffix of $Y_{j-1} = y_1 y_2 \dots y_{j-1}$, and has $P_{k-1} = p_1 p_2 \dots p_{k-1}$

as a subsequence. Namely, if Z[i, j, k] does not exist, then Z[i - 1, j - 1, k - 1]

does not exist either.

-Filling in other cells.

-<u>Claim 2.</u>

[2]. If $x_i = y_j \neq p_k$, then there is not a string which is a subsequence of

$$X_{i-1} = x_1 x_2 \dots x_{i-1}$$
, a suffix of $Y_{j-1} = y_1 y_2 \dots y_{j-1}$, and has $P_k = p_1 p_2 \dots p_k$

as a subsequence. Namely, if Z[i, j, k] does not exist, then Z[i - 1, j - 1, k]

does not exist either.

-Filling in other cells.

-<u>Claim 2.</u>

[3]. If $x_i \neq y_j$, $x_i \neq p_k$, and $y_j = p_k$, then there is not a string which is a

subsequence of $X_{i-1} = x_1 x_2 \dots x_{i-1}$, a suffix of $Y_j = y_1 y_2 \dots y_j$, and has

 $P_k = p_1 p_2 \dots p_k$ as a subsequence. Namely, if Z[i, j, k] does not exist, then

Z[i - 1, j, k] does not exist either.

-Filling in other cells.

-<u>Claim 2.</u>

[4]. If $x_i \neq y_j$, $x_i \neq p_k$, and $y_j \neq p_k$, then there is not a string which is a

subsequence for $X_{i-1} = x_1 x_2 \dots x_{i-1}$, a suffix of $Y_j = y_1 y_2 \dots y_j$, and has

 $P_k = p_1 p_2 \dots p_k$ as a subsequence. Namely, if Z[i, j, k] does not exist,

then Z[i - 1, j, k] does not exist either.

-<u>Claim 3.</u> Let U_k be a longest string which is a subsequence of X, a substring of Y, and has P_k as a subsequence. Then $|U_k| = \max\{|Z[i, j, k]| : 1 \le i \le m, 1 \le j \le n, 1 \le k \le r\}$. Thus $|U_r| = \max\{|Z[i, j, r]| : 1 \le i \le m, 1 \le j \le n\} = |CLCSSubStr(X, Y; P)|$.

 $-|CLCSSeqStr(X, Y; P)| = \max\{M[i][j][r]: 0 \le i \le m, 0 \le j \le n\}.$

-We can also find the CLCSSeqStr(X, Y; P) when we write a program.

-The time complexity of our algorithm is

 $O((|X| + 1)(|Y| + 1)(|P| + 1)) \sim O(|X| |Y| |P|).$

-The space complexity of our algorithm also is

 $O((|X| + 1)(|Y| + 1)(|P| + 1)) \sim O(|X| |Y| |P|).$

Thanks