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Generative AI and Synthetic Data

• Synthetic data generation, propelled by generative AI, promotes
paradigm shift for data analytics.

• Synthetic data: artificially created to closely mirror the
characteristics and distribution of real data.

• MIT-gartner report [Gartner, 2022,Eastwood, 2023]: 60% of data
utilized in AI and analytics will be synthetically generated by 2024,
and synthetic data will surpass real data in AI models by 2030.

• As synthetic data gains prominence, questions arise concerning our
data analytics paradigm: (1) how to utilize synthetic data; (2) its
connection with raw data.

• Can we benefit from synthetic data for any analytic task?
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Example

Figure 1: [Gao et al., 2023]: Machine learning models trained on
synthetic data achieves state-of-art performances compared with
real-data-trained models for medical imaging.
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Challenges for Health Care Data

• Two importance aspects for healthcare data and medical research

• Compliance—storage must be compliant with regulations–role
based access control.

• Efficacy.

• Data sharing becomes difficulty due to concern of security and
privacy.

• Focus on the potential impact of generative AI: Can we effectively
utilize synthetic data to enhance data privacy & efficacy.
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Overview

• Synthetic data: produced by a generative model to replicate raw data, trained
on raw data via pre-trained models with knowledge transfer from similar studies.

• Benefits

(1) privacy: privacy leakage when sharing real data...
(2) scarcity: limited size; expensive trials; time-consuming; imbalance...

• Generative models:

• GANs [Goodfellow et al., 2014,Karras et al., 2019,Liu et al., 2020].
• Normalizing flows [Dinh et al., 2016,Kingma and Dhariwal, 2018].
• Diffusion models: DDPM for images [Ho et al., 2020,Rombach et al., 2022] and

models for tabular data [Kotelnikov et al., 2023,Zhang et al., 2023]
• LLMS such as OpenAI gpt family [Bubeck et al., 2023,OpenAI, 2023], Meta’s

llama, google’s bard, anthropic’s claude ...

• Q1: Privacy. Can synthetic data satisfy data privacy standard?

• Q2: Efficacy. Does a method gain accuracy on synthetic compared to raw
data?

• Diverging viewpoints: [Gao et al., 2023,Kotelnikov et al., 2023]
• Key: trade-off between generation error and synthetic size.
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Outline

1 Q1: Privacy. Can synthetic data satisfy data privacy
standard?

2 Q2: Efficacy. Does a method gain accuracy on synthetic
compared to raw data?



Data privacy

• Methods for privacy protection:

(1) Methods (noise injection, sampling) satisifying differential
privacy–gold standard: 2020 u.s. decennial census;

• Adversarial attacks: membership, linkage, attribute inference,
reverse engineering, aggregate, temporal, query-based...

• Simple, low cost, effective.

(2) Federated learning: secure multi-party computation;
(3) Homomorphic encryption;
(4) De-identification: still has high risks of disclosing due to Linkage,

small size, data combination.

• Use of synthetic data may change way of protecting privacy.

• Less privacy risk except reversed engineering attack.
• No trade-off between statistical accuracy and level of protection.
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Differential Privacy

• Differential privacy [Dwork, 2008] quantifies amount of privacy protection.

• Recognizes that privacy can be undermined even after data
de-identification; e.g., “tallest person in room” is an identifier.

• Privatization mechanism m satisfies (ε, δ)-differential privacy:

p
(
m(z) ∈ b|z = z

)
p
(
m(z) ∈ b|z = z ′

) ≤ eε + δ,

For event b & adjacent z , z ′ (substitute a single observation)

• ε: privacy budget: δ: allowance. Small ε → strict privacy protection may
reduce statistical accuracy of downstream analysis.

• Differentially private synthetic data: generated by a diffusion model with
gaussian noise injection to gradient updates for stochastic gradient
decent [Ghalebikesabi et al., 2023].
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Outline

1 Q1: Privacy. Can synthetic data satisfy data privacy
standard?

2 Q2: Efficacy. Does a method gain accuracy on synthetic
compared to raw data?



Efficacy: Generational Effect

• Raw sample: (zi )ni=1 ∼ cdf F .

• Synthetic sample: (z̃i )mi=1 ∼ F̃ , produced from a generative model.

• Method: use synthetic (z̃i )mi=1 to perform any data analytics task.

• Comparison: accuracy of a method on (z̃i )mi=1 vs (zi )ni=1.

• yes, m = +∞ like simulations if no generation error (F̃ = F ).

• Generation error: discrepancy between F̃ & F . high-fidelity: low error.

• Generational effect: increasing m could diminish accuracy benefits or even a
plateau due to generation error.

• Solution: “syn” framework [Shen et al., 2023] — use empirical error measures
to tune (Prediction error, Type-I error control) to choose optimum m.

• Sample size expansion: m >> n.
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Generative Models: Diffusion

(image credit: https://cvpr2022-tutorial-diffusion-models.github.io/)

• Diffusion: Inject noises in forward process and denoise backwards.

• Forward: xt =
√
1− βt · xt−1 +

√
βt · ϵt ; ϵt ∼ N (0d , Id).

• Backward: xt−1 = µθ(xt , t) +
√
βt · ϵt , ϵt ∼ mcN(0d , Id),

• µθ(xt , t) = 1√
1−βt

(
xt − βt√

1−
∏t

i=1(1−βi )
· ϵθ(xt , t)

)
.

• βt ∈ (0, 1) controls the amount of noise at step t.
• ϵθ(xt , t): a neural network parameterized by θ, predicting noise ϵt .

• Sampling is conducted by feeding noise into the backward process.
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Denoising Network
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Knowledge Transfer with Diffusion Models

Fine-tune pre-trained diffusion model on raw datasets.
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Classification on Adult-Female
• Adult dataset [Kohavi et al., 1996]:

• Predict if annual income > 50k (classification) for adult-female data
(16, 192) using 6 numerical & 8 nominal features: age, work class,
final weight, # years in education, marital status, working hours per
week, native country,.. .

• Boosting applies to syn-female: knowledge transfer from males
• Pre-training (knowledge transfer): train tdm [Kotelnikov et al.,

2023] on adult-male of size 32, 650, as our pre-trained generator.
• raw: adult-female subset of size n = 1, 350.
• test: an independent adult-female subset of size 1, 350.

• Three prediction models:
• Catboost: boosting on raw data, traditional.
• Synboost: boosting on synthetic data with knowledge transfer.
• FNN: feed-forward-network with knowledge transfer.

• Effect of synthetic size m: tune m/n ∈ {1, 2, . . . , 30} on
misclassification error.

• Pre-training data are often unavailable in practice but Pre-trained
models may be available → knowledge transfer via fine-tuning.
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Marginal Distributions: Females vs Males
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Pairwise Correlations: Females vs Males

Knowledge transfer → information gain: synthetic resembles raw
females
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Adult-Female: Information gain

• Measure fidelity based on distributional distances:

FID (gaussian) Wasserstein-1 Wasserstein-2

Female (raw) vs male (raw) 1.971 1.968 2.125
Female (raw) vs male (pre-trained) 2.051 1.967 2.127
Female (raw) vs female (fine-tuned) 0.249 1.170 1.399

Table 1: FID-scores, Wasserstein-1, and -2 distances between the true female
sample and other samples. “raw”, “pre-trained”, and “fine-tuned” denote raw
data, synthetic data generated from a pre-trained model, and synthetic data
generated from a fine-tuned model.

• Knowledge transfer via fine-tuning improves distribution closeness.
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SynBoost: Sample Size Augmentation

• Efficacy enhancement through synthetic size of larger size Through
knowledge transfer.

• Generational effect: optimal m ≈ 23n (trade-off between generation
error and accuracy).
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Inference: Syn-Test

• Inference for complicated models, e.g., boosting, deep neural network
(FNN): no asymptotic dist, lacks power, sample splitting [Dai et al.,
2021,Wasserman et al., 2020] for black-box learners (dnn).

• Use synthetic data to boost power while controlling Type-I error.

• Syn-Test: training sample equally split to S1 and S2.

• Train or fine-tune generative models using S1 and S2 to estimate null
distribution and Type-I error using MC approach.

• Choose largest synthetic size m that Type-I error is controlled.
• Testing with synthetic data of size m (usually > n).
• Need a validation sample S3 for tuning to avoid overfitting.

• Trade-off between generation effect and estimation error.
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Syn-Test Illustration
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Inference: Syn-Test on Adult-Female

• Dataset: adult-female dataset [Kohavi et al., 1996] for predicting if their
annual income exceeds 50k (binary classification).

• Inference: significance test for features age, education years, & working
hours per week. black-box statistic [Dai et al., 2021] is applied here.

• Raw sample: training (2, 700) and inference size (n = 300).

• Knowledge transfer: pre-train TDM on adult-male (larger size with distinct
distributions) and fine-tune it on adult-female dataset.

• Tune m/n ∈ {1, 2, . . . , 20} with α = 0.05.
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Estimated Type-I Error and Null Distribution
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Estimated Distribution of Test Statistic

Knowledge transfer → increase power through volume expansion.
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Conclusion

• Impact of generative AI in data analytics is profound, presenting two primary
advantages: diminished privacy concerns and enhanced statistical accuracy via
sample size expansion through knowledge transfer.

• Statistical accuracy: Recognize the “generational effect” present in synthetic
data.

• Development of large pre-trained models: Such advancements are crucial for
furthering scientific research.

• This is just the start, with more advancements anticipated.
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Thank you!
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